最近考虑使用hadoop mapreduce来分析mongodb上的数据,从网上找了一些demo,东拼西凑,终于运行了一个demo,下面把过程展示给大家
环境
- ubuntu 14.04 64bit
- hadoop 2.6.4
- mongodb 2.4.9
- Java 1.8
- mongo-hadoop-core-1.5.2.jar
- mongo-java-driver-3.0.4.jar
mongo-hadoop-core-1.5.2.jar以及mongo-java-driver-3.0.4.jar的下载和配置
- 编译mongo-hadoop-core-1.5.2.jar
$ git clone https://github.com/mongodb/mongo-hadoop $ cd mongo-hadoop $ ./gradlew jar
- 编译时间比较长,成功编译之后mongo-hadoop-core-1.5.2.jar存在的路径是core/build/libs
- 下载mongo-java-driver-3.0.4.jar
http://central.maven.org/maven2/org/mongodb/mongo-java-driver/3.0.4/
选择 mongo-java-driver-3.0.4.jar
数据
- 数据样例
> db.in.find({}) { "_id" : ObjectId("5758db95ab12e17a067fbb6f"), "x" : "hello world" } { "_id" : ObjectId("5758db95ab12e17a067fbb70"), "x" : "nice to meet you" } { "_id" : ObjectId("5758db95ab12e17a067fbb71"), "x" : "good to see you" } { "_id" : ObjectId("5758db95ab12e17a067fbb72"), "x" : "world war 2" } { "_id" : ObjectId("5758db95ab12e17a067fbb73"), "x" : "see you again" } { "_id" : ObjectId("5758db95ab12e17a067fbb74"), "x" : "bye bye" }
- 最后的结果
> db.out.find({}) { "_id" : "2", "value" : 1 } { "_id" : "again", "value" : 1 } { "_id" : "bye", "value" : 2 } { "_id" : "good", "value" : 1 } { "_id" : "hello", "value" : 1 } { "_id" : "meet", "value" : 1 } { "_id" : "nice", "value" : 1 } { "_id" : "see", "value" : 2 } { "_id" : "to", "value" : 2 } { "_id" : "war", "value" : 1 } { "_id" : "world", "value" : 2 } { "_id" : "you", "value" : 3 }
- 目标是统计每个文档中出现的词频,并且把单词作为key,词频作为value存在mongodb中
Hadoop mapreduce代码
- Mapreduce 代码
1 import java.util.*; 2 import java.io.*; 3 4 import org.bson.*; 5 6 import com.mongodb.hadoop.MongoInputFormat; 7 import com.mongodb.hadoop.MongoOutputFormat; 8 9 import org.apache.hadoop.conf.Configuration; 10 import org.apache.hadoop.io.*; 11 import org.apache.hadoop.mapreduce.*; 12 13 14 public class WordCount { 15 public static class TokenizerMapper extends Mapper<Object, BSONObject, Text, IntWritable> { 16 private final static IntWritable one = new IntWritable(1); 17 private Text word = new Text(); 18 public void map(Object key, BSONObject value, Context context ) 19 throws IOException, InterruptedException { 20 System.out.println( "key: " + key ); 21 System.out.println( "value: " + value ); 22 StringTokenizer itr = new StringTokenizer(value.get( "x" ).toString()); 23 while (itr.hasMoreTokens()) { 24 word.set(itr.nextToken()); 25 context.write(word, one); 26 } 27 } 28 } 29 public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { 30 private IntWritable result = new IntWritable(); 31 public void reduce(Text key, Iterable<IntWritable> values, Context context ) 32 throws IOException, InterruptedException { 33 int sum = 0; 34 for (IntWritable val : values) { 35 sum += val.get(); 36 } 37 result.set(sum); 38 context.write(key, result); 39 } 40 } 41 public static void main(String[] args) throws Exception { 42 Configuration conf = new Configuration(); 43 conf.set( "mongo.input.uri" , "mongodb://localhost/testmr.in" ); 44 conf.set( "mongo.output.uri" , "mongodb://localhost/testmr.out" ); 45 @SuppressWarnings("deprecation") 46 Job job = new Job(conf, "word count"); 47 job.setJarByClass(WordCount.class); 48 job.setMapperClass(TokenizerMapper.class); 49 job.setCombinerClass(IntSumReducer.class); 50 job.setReducerClass(IntSumReducer.class); 51 job.setOutputKeyClass(Text.class); 52 job.setOutputValueClass(IntWritable.class); 53 job.setInputFormatClass( MongoInputFormat.class ); 54 job.setOutputFormatClass( MongoOutputFormat.class ); 55 System.exit(job.waitForCompletion(true) ? 0 : 1); 56 } 57 }
- 注意:设置mongo.input.uri和mongo.output.uri
1 conf.set( "mongo.input.uri" , "mongodb://localhost/testmr.in" ); 2 conf.set( "mongo.output.uri" , "mongodb://localhost/testmr.out" );
- 编译
- 编译
$ hadoop com.sun.tools.javac.Main WordCount.java -Xlint:deprecation
- 编译jar包
$ jar cf wc.jar WordCount*.class
- 编译
- 运行
- 启动hadoop,运行mapreduce代码必须启动hadoop
$ start-all.sh
- 运行程序
$ hadoop jar wc.jar WordCount
- 启动hadoop,运行mapreduce代码必须启动hadoop
- 查看结果
$ mongo MongoDB shell version: 2.4.9 connecting to: test > use testmr; switched to db testmr > db.out.find({}) { "_id" : "2", "value" : 1 } { "_id" : "again", "value" : 1 } { "_id" : "bye", "value" : 2 } { "_id" : "good", "value" : 1 } { "_id" : "hello", "value" : 1 } { "_id" : "meet", "value" : 1 } { "_id" : "nice", "value" : 1 } { "_id" : "see", "value" : 2 } { "_id" : "to", "value" : 2 } { "_id" : "war", "value" : 1 } { "_id" : "world", "value" : 2 } { "_id" : "you", "value" : 3 } >
以上是一个简单的例子,接下来我要用hadoop mapreduce处理mongodb中的更加复杂的数据。敬请期待,如果有疑问,请在留言区提出 ^_^
参考资料以及文档
- The elephant in the room mongo db + hadoop
- http://chenhua-1984.iteye.com/blog/2162576
- http://api.mongodb.com/java/2.12/com/mongodb/MongoURI.html
- http://stackoverflow.com/questions/27020075/mongo-hadoop-connector-issue
如果The elephant in the room mongo db + hadoop打不开,请到我的github下载ppt