机器学习基本概念:batch_size、epoch、 iteration

batch_size

单次训练用的样本数,通常为2^N,如32、64、128…

相对于正常数据集,如果过小,训练数据就收敛困难;过大,虽然相对处理速度加快,但所需内存容量增加。

使用中需要根据计算机性能和训练次数之间平衡。 

epoch

1 epoch = 完成一次全部训练样本 = 训练集个数 / batch_size

iterations

1 epoch = 完成一次batch_size个数据样本迭代,通常一次前向传播+一次反向传播

    原文作者:机器学习
    原文地址: https://www.cnblogs.com/xbit/p/9783327.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞