作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处
大家都知道用mapreduce或者spark写入已知的hbase中的表时,直接在mapreduce或者spark的driver class中声明如下代码
job.getConfiguration().set(TableOutputFormat.OUTPUT_TABLE, tablename);
随后mapreduce在mapper或者reducer中直接context写入即可,而spark则是构造好包含Put的PairRDDFunctions后saveAsHadoopDataset即可.
而经常会碰到一些要求是根据输入数据,处理后需要写入hbase多个表或者表名是未知的,需要按照数据中某个字段来构造表名写入hbase.
由于表名未知,所以不能设置TableOutputFormat.OUTPUT_TABLE,那么这种要求也容易实现,分别总结mapreduce和spark的实现方法(其实到最后会发现殊途同归)
一.MapReduce写入Hbase多表
在MR的main方法中加入如下代码即可
job.setOutputFormatClass(MultiTableOutputFormat.class);
随后就可以在mapper或者reducer的context中根据相关字段构造表名和put写入多个hbase表.
二.Spark写入Hbase多表
这里直接用我测试过的spark streaming程序写入多个hbase表,上代码
object SparkStreamingWriteToHbase { def main(args: Array[String]): Unit = { var masterUrl = "yarn-client" if (args.length > 0) { masterUrl = args(0) } val conf = new SparkConf().setAppName("Write to several tables of Hbase").setMaster(masterUrl) val ssc = new StreamingContext(conf, Seconds(5)) val topics = Set("app_events") val brokers = PropertiesUtil.getValue("BROKER_ADDRESS") val kafkaParams = Map[String, String]( "metadata.broker.list" -> brokers, "serializer.class" -> "kafka.serializer.StringEncoder") val hbaseTableSuffix = "_clickcounts" val hConf = HBaseConfiguration.create() val zookeeper = PropertiesUtil.getValue("ZOOKEEPER_ADDRESS") hConf.set(HConstants.ZOOKEEPER_QUORUM, zookeeper) val jobConf = new JobConf(hConf, this.getClass) val kafkaDStreams = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics) val appUserClicks = kafkaDStreams.flatMap(rdd => { val data = JSONObject.fromObject(rdd._2) Some(data) }).map{jsonLine => val key = jsonLine.getString("appId") + "_" + jsonLine.getString("uid") val value = jsonLine.getString("click_count") (key, value) } val result = appUserClicks.map { item => val rowKey = item._1 val value = item._2 convertToHbasePut(rowKey, value, hbaseTableSuffix) } result.foreachRDD { rdd => rdd.saveAsNewAPIHadoopFile("", classOf[ImmutableBytesWritable], classOf[Put], classOf[MultiTableOutputFormat], jobConf) } ssc.start() ssc.awaitTermination() } def convertToHbasePut(key: String, value: String, tableNameSuffix: String): (ImmutableBytesWritable, Put) = { val rowKey = key val tableName = rowKey.split("_")(0) + tableNameSuffix val put = new Put(Bytes.toBytes(rowKey)) put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("count"), Bytes.toBytes(value)) (new ImmutableBytesWritable(Bytes.toBytes(tableName)), put) } }
简单描述下,这里spark streaming中处理的是从kafka中读取的json数据,其中的appId字段用来构造tablename区分写入不同的hbase table.最后以saveAsNewAPIHadoopFile把rdd写入hbase表
进入saveAsNewAPIHadoopFile会发现其实和mapreduce的配置没什么区别,如下
def saveAsNewAPIHadoopFile( path: String, keyClass: Class[_], valueClass: Class[_], outputFormatClass: Class[_ <: NewOutputFormat[_, _]], conf: Configuration = self.context.hadoopConfiguration) { // Rename this as hadoopConf internally to avoid shadowing (see SPARK-2038). val hadoopConf = conf val job = new NewAPIHadoopJob(hadoopConf) job.setOutputKeyClass(keyClass) job.setOutputValueClass(valueClass) job.setOutputFormatClass(outputFormatClass) job.getConfiguration.set("mapred.output.dir", path) saveAsNewAPIHadoopDataset(job.getConfiguration) }
这个方法的参数分别是ouput path,这里写入hbase,传入为空即可,其他参数outputKeyClass,outputValueClass,outputFormatClass,jobconf
这里的outputFormatClass确保一定是MultiTableOutputFormat来保证写入多表,对了,这里说明一点,确保你要写入的hbase表首先被create了。