Dijkstra、Bellman-ford、SPFA、Floyd算法

                Dijkstra算法

        Dijkstra算法是典型的算法。Dijkstra算法是很有代表性的算法。    Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。

Bellman-ford算法是求含负权图的单源最短路径算法,效率很低,但代码很容易写。即进行持续地松弛(原文是这么写的,为什么要叫松弛,争议很大),每次松弛把每条边都更新一下,若n-1次松弛后还能更新,则说明图中有负环,无法得出结果,否则就成功完成。

                Bellman-ford算法

    Bellman-ford算法有一个小优化:每次松弛先设一个标识flag,初值为FALSE,若有边更新则赋值为TRUE,最终如果还是FALSE则直接成功退出。Bellman-ford算法浪费了许多时间做没有必要的松弛,而SPFA算法用队列进行了优化,效果十分显著,高效难以想象。SPFA还有SLF,LLL,滚动数组等优化。

                SPFA算法

    SPFA(队列优化)算法是求单源最短路径的一种算法,在Bellman-ford算法的基础上加上一个队列优化,减少了冗余的松弛操作,是一种高效的最短路算法。

                 Floyd算法

    Floyd算法又称为插点法,是一种用于寻找给定的加权图中多源点之间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。

    原文作者:Bellman - ford算法
    原文地址: https://blog.csdn.net/Andy_0929/article/details/62887194
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞