Bellman-Ford算法 和 SPFA算法

             从百度以及大牛们的博客中找到的,仅供学习参考。。。。

               Bellman-ford算法是求含负权的单源最短路径算法,效率很低,但代码很容易写。即进行不停地松弛(relaxation),每次松弛把每条边都更新一下,若n-1次松弛后还能更新,则说明图中有负环(即负权回路,本文最后有解释),无法得出结果,否则就成功完成。Bellman-ford算法有一个小优化:每次松弛先设一个旗帜flag,初值为FALSE,若有边更新则赋值为TRUE,最终如果还是FALSE则直接成功退出。Bellman-ford算法浪费了许多时间做无必要的松弛,所以SPFA算法用队列进行了优化,效果十分显著,高效难以想象。SPFA还有SLF,LLL,滚动数组等优化。

      Dijkstra算法中不允许边的权是负权,如果遇到负权,则可以采用Bellman-Ford算法。

  Bellman-Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题。对于给定的带权(有向或无向)图 G=(V,E),其源点为s,加权函数w是 边集 E 的映射。对图G运行Bellman-Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路。若不存在这样的回路,算法将给出从源点s到 图G的任意顶点v的最短路径d[v]。

  适用条件&范围

  1.单源最短路径(从源点s到其它所有顶点v);

  2.有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图);

  3.边权可正可负(如有负权回路输出错误提示);

  4.差分约束系统;

  Bellman-Ford算法描述:

  1,.初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0;

  2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)

  3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 d[v]中。

  描述性证明:

  首先指出,图的任意一条最短路径既不能包含负权回路,也不会包含正权回路,因此它最多包含|v|-1条边。

  其次,从源点s可达的所有顶点如果 存在最短路径,则这些最短路径构成一个以s为根的最短路径树。Bellman-Ford算法的迭代松弛操作,实际上就是按顶点距离s的层次,逐层生成这棵最短路径树的过程。

  在对每条边进行1遍松弛的时候,生成了从s出发,层次至多为1的那些树枝。也就是说,找到了与s至多有1条边相联的那些顶点的最短路径;对每条边进行第2遍松弛的时候,生成了第2层次的树枝,就是说找到了经过2条边相连的那些顶点的最短路径……。因为最短路径最多只包含|v|-1 条边,所以,只需要循环|v|-1 次。

  每实施一次松弛操作,最短路径树上就会有一层顶点达到其最短距离,此后这层顶点的最短距离值就会一直保持不变,不再受后续松弛操作的影响。(但是,每次还要判断松弛,这里浪费了大量的时间,怎么优化?单纯的优化是否可行?)

  如果没有负权回路,由于最短路径树的高度最多只能是|v|-1,所以最多经过|v|-1遍松弛操作后,所有从s可达的顶点必将求出最短距离。如果 d[v]仍保持 +∞,则表明从s到v不可达。

  如果有负权回路,那么第 |v|-1 遍松弛操作仍然会成功,这时,负权回路上的顶点不会收敛。

C++ pseudo code

Bellman-Ford(G,w,s) boolean //,边集 函数 s为源点   

for each vertex v ∈ VG) do //初始化 1阶段   

          d[ v] +∞ 

 d[s] 0//1阶段结束 

 for i=1 to |v|-1 do //2阶段开始,双重循环。

    for each edgeu,v) ∈E(G) do //边集数组要用到,穷举每条边。           If d[v]> d[u]+ w(u,v) then //松弛判断,w(w,v)uv的权值

             d[v]=d[u]+w(u,v) //松弛操作 2阶段结束 

 for each edgeu,v) ∈E(G) do   If d[v]> d[u]+ w(u,v) then

         Exit false   //存在负权回路

 Exit true

 负权回路

 在一个图里每条边都有一个权值(有正有负)
如果存在一个环(从某个点出发又回到自己的路径),而且这个环上所有权值之和是负数,那这就是一个负权环,也叫负权回路
存在负权回路的图是不能求两点间最短路的,因为只要在负权回路上不断兜圈子,所得的最短路长度可以任意小。(转自百度知道)

 

 

简介

SPFA

 

求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm

SPFA算法是西南交通大学段凡丁1994年发表的.

从名字我们就可以看出,这种算法在效率上一定有过人之处。

很多时候,给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了。

简洁起见,我们约定有向加权图G不存在负权回路,即最短路径一定存在。当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重点。

我们用数组d记录每个结点最短路径估计值,而且用邻接表来存储图G。我们采取的方法是松弛:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止。

SPFA原理

定理: 只要最短路径存在,上述SPFA算法必定能求出最小值。

证明:每次将点放入队尾,都是经过松弛操作达到的。换言之,每次的优化将会有某个点v最短路径估计值d[v]变小。所以算法的执行会使d越来越小。由于我们假定图中不存在负权回路,所以每个结点都有最短路径值。因此,算法不会无限执行下去,随着d值的逐渐变小,直到到达最短路径值时,算法结束,这时的最短路径估计值就是对应结点的最短路径值。(证毕)

期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2

实现方法:建立一个队列,初始时队列里只有起始点,再建立一个表格记录起始点到所有点的最短路径该表格的初始值要赋为极大值,该点到他本身的路径赋为0)。然后执行松弛操作,用队列里有的点去刷新起始点到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列为空

判断有无负环:如果某个点进入队列的次数超过N次则存在负环 (存在负环则无最短路径,如果有负环则会无限松弛,而一个带n个点的图至多松弛n-1次)

spfa的一个很直观的理解就是由无权图的bfs转化而来.在无权图中,bfs首先到达的顶点所经历的路径一定是最短路(也就是经过的最少顶点数).所以此时利用visit[u],可以使每个顶点只进队一次.在带权图中,最先到达的顶点所计算出来的路径不一定是最短路.一个解决方法是放弃visit数组,此时所需时间自然就是指数级的.所以我们不能放弃visit数组,而是在处理一个已经在队列中且当前所得的路径比原来更好的顶点时,直接更新最优解.

    原文作者:Bellman - ford算法
    原文地址: https://blog.csdn.net/anqier0468/article/details/12682213
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞