#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<string>
#include<map>
#include<set>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
#include<sstream>
#define ll long long
using namespace std;
const int N_MAX = 100+10;
const int INF = 0x00ffffff;
const double M_DBL_MAX = 1.7976931348623158e+308;
const double M_DBL_MIN = 2.2250738585072014e-308;
/**********************************************************/
struct bank{
int l,r;
double rate,cost;
bank (int a, int b, double c, double d){l=a,r=b,rate=c,cost=d;}
bank& operator = (const bank& s){
l=s.l,r=s.r;
rate=s.rate,cost=s.cost;
return *this;
}
bank (){}
}exchg[N_MAX*2];
int exlen;
int n,m,s;
double v;
double dist[N_MAX];
/**********************************************************/
int min_2 (int x,int y) {return x<y?x:y;}
int max_2 (int x,int y) {return x>y?x:y;}
void swap (int& a, int& b){a^=b;b^=a;a^=b;}
bool bellman_ford ();
/**********************************************************/
int main()
{
//freopen ("in.txt","r",stdin);
scanf ("%d %d %d %lf",&n,&m,&s,&v);
int a,b;
double rab,cab,rba,cba;
exlen=0;
for (int i=0;i<n;i++){
scanf ("%d %d %lf %lf %lf %lf",&a,&b,&rab,&cab,&rba,&cba);
exchg[exlen++]=bank (a-1,b-1,rab,cab);
exchg[exlen++]=bank (b-1,a-1,rba,cba);
}
if (bellman_ford ())
printf ("YES\n");
else printf ("NO\n");
return 0;
}
bool bellman_ford ()
{
memset (dist,0,sizeof (dist));//为使价值增加,dist初始化为0
dist[s-1]=v;//设置源点
for (int k=0;k<n-1;k++){//循环n-1次
bool flag=false;
for (int i=0;i<exlen;i++){//遍历exchg中的每条边
int x=exchg[i].l, y=exchg[i].r;
if (dist[y]<(dist[x]-exchg[i].cost)*exchg[i].rate){//满足条件
dist[y]=(dist[x]-exchg[i].cost)*exchg[i].rate;
flag=true;//当没有做这步说明已经得到”最长路径“
}
}
if (!flag) break;
}
for (int i=0;i<exlen;i++)//如果还做这步,说明前面得到的不是最长路径,说明有正权回路
if (dist[exchg[i].r]<(dist[exchg[i].l]-exchg[i].cost)*exchg[i].rate)
return true;
return false;
}
POJ 1860 Currency Exchange Bellman-Ford算法求单源最短路径并判断是否有正权回路
原文作者:Bellman - ford算法
原文地址: https://blog.csdn.net/qq1627218380/article/details/47085409
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
原文地址: https://blog.csdn.net/qq1627218380/article/details/47085409
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。