Problem
Given an integer matrix, find the length of the longest increasing path.
From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).
Example 1:
Input: nums =
[
[9,9,4],
[6,6,8],
[2,1,1]
]
Output: 4
Explanation: The longest increasing path is [1, 2, 6, 9].
Example 2:
Input: nums =
[
[3,4,5],
[3,2,6],
[2,2,1]
]
Output: 4
Explanation: The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.
Solution
class Solution {
private static final int[][] dirs = {{0,1},{0,-1},{-1,0},{1,0}};
public int longestIncreasingPath(int[][] matrix) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) return 0;
int m = matrix.length, n = matrix[0].length;
int[][] cache = new int[m][n];
int max = 1;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
int curMax = dfs(matrix, i, j, cache);
max = Math.max(max, curMax);
}
}
return max;
}
private int dfs(int[][] matrix, int i, int j, int[][] cache) {
//if saved(visited), return directly
if (cache[i][j] != 0) return cache[i][j];
int m = matrix.length, n = matrix[0].length;
int max = 1;
//this for loop is actually getting dfs result for 4 directions
for (int[] dir: dirs) {
int x = i+dir[0], y = j+dir[1];
if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] <= matrix[i][j]) continue;
int curMax = 1+dfs(matrix, x, y, cache);
max = Math.max(max, curMax);
}
cache[i][j] = max;
return max;
}
}