问题描述
一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
解题思路
如何把这个问题分解成子问题呢?经过分析,发现 “求以ak(k=1, 2, 3…N)为终点的最长上升子序列的长度”是个好的子问题――这里把一个上升子序列中最右边的那个数,称为该子序列的“终点”。虽然这个子问题和原问题形式上并不完全一样,但是只要这N个子问题都解决了,那么这N个子问题的解中,最大的那个就是整个问题的解。
由上所述的子问题只和一个变量相关,就是数字的位置。因此序列中数的位置k 就是“状态”,而状态 k 对应的“值”,就是以ak做为“终点”的最长上升子序列的长度。这个问题的状态一共有N个。状态定义出来后,转移方程就不难想了。假定MaxLen (k)表示以ak做为“终点”的最长上升子序列的长度,那么:
MaxLen (1) = 1
MaxLen (k) = Max { MaxLen (i):1<i < k 且 ai < ak且 k≠1 } + 1
这个状态转移方程的意思就是,MaxLen(k)的值,就是在ak左边,“终点”数值小于ak,且长度最大的那个上升子序列的长度再加1。因为ak左边任何“终点”小于ak的子序列,加上ak后就能形成一个更长的上升子序列。
实际实现的时候,可以不必编写递归函数,因为从 MaxLen(1)就能推算出MaxLen(2),有了MaxLen(1)和MaxLen(2)就能推算出MaxLen(3)……
#include <stdio.h> #define MAX 1000 int seq[MAX+10]; int seqlen[MAX+10]; int main() { int i,j,k,N,max,maxlen=1; for(i=1;i<=9;i++) seqlen[i]=1; //seqlen数组存以第i个数为终点的最长上升序列 scanf(“%d”,&N); for(i=1;i<=N;i++) scanf(“%d”,&seq[i]); //seq数组保存序列数组 for (i=2;i<=N;i++) { max=0; for (j=1;j<=i-1;j++) { if(seq[j]<seq[i]&&seqlen[j]>max) //在前i-1个序列中,寻找以终点小于seq[i]的最长的子序列,即最优子状态 max=seqlen[j]; } seqlen[i]=max+1; if(seqlen[i]>maxlen) //seqlen中保存的是第i个数为终点的最长上升序列,找出这个数组中最大的值即为最优序列长度 maxlen=seqlen[i]; } printf(“%d/n”,maxlen); return 0; }
2010-11-22 15:13:57