动态规划——最少硬币问题

http://hawstein.com/posts/dp-knapsack.html

如果我们有面值为1元、3元和5元的硬币若干枚,如何用最少的硬币凑够11元? (表面上这道题可以用贪心算法,但贪心算法无法保证可以求出解,比如1元换成2元的时候)

首先我们思考一个问题,如何用最少的硬币凑够i元(i<11)?为什么要这么问呢?两个原因:1.当我们遇到一个大问题时,总是习惯把问题的规模变小,这样便于分析讨论。 2.这个规模变小后的问题和原来的问题是同质的,除了规模变小,其它的都是一样的,本质上它还是同一个问题(规模变小后的问题其实是原问题的子问题)。

好了,让我们从最小的i开始吧。当i=0,即我们需要多少个硬币来凑够0元。由于1,3,5都大于0,即没有比0小的币值,因此凑够0元我们最少需要0个硬币。 (这个分析很傻是不是?别着急,这个思路有利于我们理清动态规划究竟在做些什么。) 这时候我们发现用一个标记来表示这句“凑够0元我们最少需要0个硬币。”会比较方便,如果一直用纯文字来表述,不出一会儿你就会觉得很绕了。那么,我们用d(i)=j来表示凑够i元最少需要j个硬币。于是我们已经得到了d(0)=0,表示凑够0元最小需要0个硬币。当i=1时,只有面值为1元的硬币可用,因此我们拿起一个面值为1的硬币,接下来只需要凑够0元即可,而这个是已经知道答案的,即d(0)=0。所以,d(1)=d(1-1)+1=d(0)+1=0+1=1。当i=2时,仍然只有面值为1的硬币可用,于是我拿起一个面值为1的硬币,接下来我只需要再凑够2-1=1元即可(记得要用最小的硬币数量),而这个答案也已经知道了。所以d(2)=d(2-1)+1=d(1)+1=1+1=2。一直到这里,你都可能会觉得,好无聊,感觉像做小学生的题目似的。因为我们一直都只能操作面值为1的硬币!耐心点,让我们看看i=3时的情况。当i=3时,我们能用的硬币就有两种了:1元的和3元的( 5元的仍然没用,因为你需要凑的数目是3元!5元太多了亲)。既然能用的硬币有两种,我就有两种方案。如果我拿了一个1元的硬币,我的目标就变为了:凑够3-1=2元需要的最少硬币数量。即d(3)=d(3-1)+1=d(2)+1=2+1=3。这个方案说的是,我拿3个1元的硬币;第二种方案是我拿起一个3元的硬币,我的目标就变成:凑够3-3=0元需要的最少硬币数量。即d(3)=d(3-3)+1=d(0)+1=0+1=1. 这个方案说的是,我拿1个3元的硬币。好了,这两种方案哪种更优呢?记得我们可是要用最少的硬币数量来凑够3元的。所以,选择d(3)=1,怎么来的呢?具体是这样得到的:d(3)=min{d(3-1)+1, d(3-3)+1}。

//values[]存放零钱数组,valuekinds零钱种类个数,money待凑钱数,coinsused[]待凑钱的最少零钱个数数组
int  makechange(int values[],int valuekinds,int money,int coinsused[])
{
    coinsused[0]=0;
	for (int yuan=1;yuan<=money;yuan++)
	{
		int mincoins=yuan;
         for (int kind=0;kind<valuekinds;kind++)
         {
			 if (values[kind]<=yuan)
			 {
				 int temp=coinsused[yuan-values[kind]]+1;
				 if (mincoins>temp)
				 {
					 mincoins=temp;
				 }
			 }
       }
	coinsused[yuan]=mincoins;
	}
	return coinsused[money];
}
    原文作者:动态规划
    原文地址: https://blog.csdn.net/seuliujiaguo/article/details/39378921
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞