动态规划-DAG-硬币问题

题目:有n种硬币,面值分别为V1,V2,…Vn,每种都有无限多。给定非负整数S,可以选用多少个硬币,使得面值之和恰好为S?输出硬币数目的最小值和最大值!

  如果我们有面值为1元、3元和5元的硬币若干枚,如何用最少的硬币凑够11元? (表面上这道题可以用贪心算法,但贪心算法无法保证可以求出解,比如1元换成2元的时候)

  首先我们思考一个问题,如何用最少的硬币凑够i元(i<11)?为什么要这么问呢?两个原因:1.当我们遇到一个大问题时,总是习惯把问题的规模变小,这样便于分析讨论。2.这个规模变小后的问题和原来的问题是同质的,除了规模变小,其它的都是一样的,本质上它还是同一个问题(规模变小后的问题其实是原问题的子问题)。

  好了,让我们从最小的i开始吧。当i=0,即我们需要多少个硬币来凑够0元。由于1,3,5都大于0,即没有比0小的币值,因此凑够0元我们最少需要0个硬币。这时候我们发现用一个标记来表示这句“凑够0元我们最少需要0个硬币。

  那么, 我们用d(i)=j来表示凑够i元最少需要j个硬币。于是我们已经得到了d(0)=0,表示凑够0元最小需要0个硬币。当i=1时,只有面值为1元的硬币可用,因此我们拿起一个面值为1的硬币,接下来只需要凑够0元即可,而这个是已经知道答案的,即d(0)=0。所以,d(1)=d(1-1)+1=d(0)+1=0+1=1。

当i=2时, 仍然只有面值为1的硬币可用,于是我拿起一个面值为1的硬币,接下来我只需要再凑够2-1=1元即可(记得要用最小的硬币数量),而这个答案也已经知道了。所以d(2)=d(2-1)+1=d(1)+1=1+1=2。

  一直到这里,你都可能会觉得,好无聊,感觉像做小学生的题目似的。因为我们一直都只能操作面值为1的硬币!耐心点,让我们看看i=3时的情况。当i=3时,我们能用的硬币就有两种了:1元的和3元的(5元的仍然没用,因为你需要凑的数目是3元!5元太多了亲)。既然能用的硬币有两种,我就有两种方案。如果我拿了一个1元的硬币,我的目标就变为了:凑够3-1=2元需要的最少硬币数量。即d(3)=d(3-1)+1=d(2)+1=2+1=3。这个方案说的是,我拿3个1元的硬币;第二种方案是我拿起一个3元的硬币,我的目标就变成:凑够3-3=0元需要的最少硬币数量。即d(3)=d(3-3)+1=d(0)+1=0+1=1.

  这个方案说的是,我拿1个3元的硬币。好了,这两种方案哪种更优呢? 记得我们可是要用最少的硬币数量来凑够3元的。所以, 选择d(3)=1,怎么来的呢?

  具体是这样得到的:d(3)=min{d(3-1)+1, d(3-3)+1}。

  上文中d(i)表示凑够i元需要的最少硬币数量,我们将它定义为该问题的”状态”,这个状态是怎么找出来的呢?我在另一篇文章中写过:根据子问题定义状态。你找到子问题,状态也就浮出水面了。

  最终我们要求解的问题,可以用这个状态来表示:d(11),即凑够11元最少需要多少个硬币。 那状态转移方程是什么呢?既然我们用d(i)表示状态,那么状态转移方程自然包含d(i), 上文中包含状态d(i)的方程是:d(3)=min{d(3-1)+1,d(3-3)+1}。没错,它就是状态转移方程,描述状态之间是如何转移的。当然,我们要对它抽象一下,d(i)=min{ d(i-vj)+1 },其中i-vj >=0,vj表示第j个硬币的面值;

  有了状态和状态转移方程,这个问题基本上也就解决了。

#include<cstdio> 
#include<cstring> 
int d[1000],v[10];  
int max(int a, int b)  
{  
    return a > b ? a : b;  
}  
int dpmax(int s,int n)  
{  
    if (d[s] != -1)  
        return d[s];  
    d[s] = -10000;//用于设定不能走到终点的路肯定小于能走到终点的路 
    for (int i = 0;i < n;i++)  
        if (s >= v[i])//等号很关键 
            //根据公式:max{dpmax(s-v[i])+1},代码max(d[s], dpmax(s - v[i], n)+1)中的d[s]记录的是上一个值
            d[s] = max(d[s], dpmax(s - v[i], n)+1);  
    return d[s];  
}  

int main()  
{  
    int n, s, i;  
    while (scanf("%d%d", &n, &s) != EOF)  
    {  
        for (i = 0;i < n;i++)  
            scanf("%d", &v[i]);  
        memset(d, -1, sizeof d);  
        d[0] = 0;//用于辨别该路能否走到终点 
        printf("%d\n", dpmax(s, n));  
    }  
    return 0;  
}  

解答转载自http://www.cnblogs.com/sunTin/p/6674945.html

    原文作者:动态规划
    原文地址: https://blog.csdn.net/u013668852/article/details/70216485
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞