Palindrome Partitioning与动态规划

首先看Leetcode上的Palindrome Partitioning题目:

Given a string s, partition s such that every substring of the partition is a palindrome.

Return all possible palindrome partitioning of s.

For example, given s = "aab",
Return

  [
    ["aa","b"],
    ["a","a","b"]
  ]

一开始采用的是递归解法:

public class Solution{
   List<List<String>> result = new ArrayList<List<String>>();
   public List<List<String>> partition(String s) {
       helper(s, new ArrayList<String>());
       return result;
   }  
   
   private void helper(String s, List<String> cur){                 //DFS every combinations
       if(s.length() == 0){result.add(cur); return;}        
       for(int i = 1; i <= s.length(); i++){
           String sub = s.substring(0,i);
           if(isPalindromeString(sub)){
               List<String> newList = new ArrayList<String>(cur);
               newList.add(sub);
               helper(s.substring(i,s.length()), newList);
           }
           else continue;                                    //not palindrome, ignore it
       }        
   }    
}

时间复杂度比较高,因为每个子串都是重新递归,没有保存中间结果。利用动态规划对算法做改进,如下:

public class Solution {
    public static List<List<String>> partition(String s) {
        int len = s.length();
        List<List<String>>[] result = new List[len + 1];
        result[0] = new ArrayList<List<String>>();
        result[0].add(new ArrayList<String>());

        boolean[][] pair = new boolean[len][len];
        for (int i = 0; i < s.length(); i++) {
            result[i + 1] = new ArrayList<List<String>>();
            for (int left = 0; left <= i; left++) {
                if (s.charAt(left) == s.charAt(i) && (i-left <= 1 || pair[left + 1][i - 1])) {
                    pair[left][i] = true;
                    String str = s.substring(left, i + 1);
                    for (List<String> r : result[left]) {
                        List<String> ri = new ArrayList<String>(r);
                        ri.add(str);
                        result[i + 1].add(ri);
                    }
                }
            }
        }
        return result[len];
    }
}

其中,pair存储子串(i到j)是否已经是回文串,resul[n]t存储前n个字符的临时结果。从之前的结果我们可以得到现在的结果。

再来看看Palindrome Partitioning ii:

Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

For example, given s = "aab",
Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.

类似地,利用上面的动态规划方法,解法如下:

public class Solution{
    public int minCut(String s) {
    	int len = s.length();
    	boolean[][] pair = new boolean[len][len];
    	int[] result = new int[len+1];
    	result[0] = 0;
    	
    	for(int i=0; i<len; i++){
    		result[i+1] = Integer.MAX_VALUE;
    		for(int left=0; left<=i; left++){
    			if(s.charAt(left) == s.charAt(i) && (i-left<=1 || pair[left+1][i-1])){
    				pair[left][i] = true;
    				if(left == 0) result[i+1] = 0;
    				else{
    					result[i+1] = Math.min(result[left] + 1, result[i+1]);
    				}
    			}
    		}
    	}
    	return result[len];
    }
}

然而此题并不要求给出所有划分的情况,可以考虑减少空间复杂度至O(n)。有一种很巧妙的解法:

这里,只开辟O(n)的空间存储前n个字符的最少划分次数,然后之后到底有多少个回文串,例如,遍历到字符‘b’时,

s[i] = ‘b’, 且 s[i-1,i+1]是回文 “aba”,如下:

.......aba...
|<-X->| ^
|<---Y-->|

我们知道s[0,i-1)最小划分数是 X, 所以s[0,i+1] 即Y 的最小划分数不会大于X+1. 所以我们需要找到s[0,i+1]中所有的回文串,以找到最小的划分数。代码如下:

class Solution {
public:
    int minCut(string s) {
        int n = s.size();
        vector<int> cut(n+1, 0);  // number of cuts for the first k characters
        for (int i = 0; i <= n; i++) cut[i] = i-1;
        for (int i = 0; i < n; i++) {
            for (int j = 0; i-j >= 0 && i+j < n && s[i-j]==s[i+j] ; j++) // odd length palindrome
                cut[i+j+1] = min(cut[i+j+1],1+cut[i-j]);

            for (int j = 1; i-j+1 >= 0 && i+j < n && s[i-j+1] == s[i+j]; j++) // even length palindrome
                cut[i+j+1] = min(cut[i+j+1],1+cut[i-j+1]);
        }
        return cut[n];
    }
};

    原文作者:动态规划
    原文地址: https://blog.csdn.net/xyzker/article/details/48708907
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞