当时感觉很难的题,现在来做还是很简单
我们知道包含 N 个元素的堆可以看成是一棵包含 N 个节点的完全二叉树。
每个节点有一个权值。对于小根堆来说,父节点的权值一定小于其子节点的权值。
假设 N 个节点的权值分别是 1~N,你能求出一共有多少种不同的小根堆吗?
例如对于 N=4 有如下 3 种:
1
/ \
2 3
/
4
1
/ \
3 2
/
4
1
/ \
2 4
/
3
由于数量可能超过整型范围,你只需要输出结果除以 1000000009 的余数。
【输入格式】 一个整数 N。
对于 40% 的数据,1 <= N <= 1000
对于 70% 的数据,1 <= N <= 10000
对于 100% 的数据,1 <= N <= 100000
【输出格式】 一个整数表示答案。
【输入样例】 4
【输出样例】 3
资源约定: 峰值内存消耗(含虚拟机) < 256M CPU 消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。 不要使用 package 语句。不要使用 jdk1.7 及以上版本的特性。
主类的名字必须是:Main,否则按无效代码处理。
思路:假设d[i]是以完全二叉树i号位置为根结点的二叉子堆个数,则考虑我们现在需要把n个点放入这个完全二叉树里,显然根节点已经被确定,只能放最小的,然后假设左子树的节点个数为lsize,则我们需要从n-1个节点中选出lsize个节点放入左子树,选法一共组合数C(n-1,lsize)种,剩余的放在右子树中,所以d[i]=C(n-1,lsize)*d[i的左儿子]*d[i的右儿子];
注意:求组合数需要用快速幂,乘法逆元的知识。以i为根节点个数可以先用动态规划算出来,s[i]=s[i的左儿子]+s[i的右儿子];
求阶乘逆元O(nlongn),动态规划O(n);
所以此算法的时间复杂度O(nlongn),在本题最大数据10^5下,具有时间可行性;
#include <iostream>
#include <cstdio>
#define _for(i,a,b) for(int i=a;i<b;i++)
#define _unfor(i,a,b) for(int i=a;i>=b;i--)
#define mset(a,val,n) for(int i=0;i<n;i++)a[i]=val;
using namespace std;
typedef long long LL;
LL d[100005],s[100005],mod=1000000009;
LL f[100005],inv[100005],n;
LL C(LL n,LL m){
return f[n]*inv[m]%mod*inv[n-m]%mod;
}
LL qpow(LL a,LL n){
if(!n||a==1)return 1;
LL x=qpow(a,n/2);
return n%2?(x*x%mod*a%mod):(x*x%mod);
}
int main(){
cin>>n;
f[0]=1;
_for(i,1,100005){
f[i]=f[i-1]*i%mod;
inv[i]=qpow(f[i],mod-2);
}
_unfor(i,n,1)
s[i]=(i*2<=n?s[i*2]:0)+((i*2+1)<=n?s[i*2+1]:0)+1; //c[i]<=n所以不用取余
//初始化子树节点个数
mset(d,1,n+5);
_unfor(i,n,1)if(i*2+1<=n)
d[i]= ((C(s[i]-1,s[i*2+1])*d[i*2])%mod*d[i*2+1])%mod;
cout<< d[1]<<endl;
}