线性规划:
在数学中,线性规划(Linear Programming,简称LP)问题是目标函数和约束条件都是线性的最优化问题。
动态规划:
动态规划(英语:Dynamic programming,DP)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。 动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。
范数:
范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,是一个函数,其为向量空间内的所有向量赋予非零的正长度或大小。半范数反而可以为非零的向量赋予零长度。
L0范数:L0范数是指向量中非0的元素的个数。
L1范数:L1范数是指向量中各个元素绝对值之和,也有个美称叫“稀疏规则算子”(Lasso regularization)。
L2范数:它也不逊于L1范数,它有两个美称,在回归里面,有人把有它的回归叫“岭回归”(Ridge Regression),有人也叫它“权值衰减weight decay”。它的强大功效是改善机器学习里面一个非常重要的问题:过拟合。
单纯性法:
数学最优化中,由George Dantzig发明的单纯形法(simplex algorithm)是线性规划问题的数值求解的流行技术。有一个算法与此无关,但名称类似,它是Nelder-Mead法或称下山单纯形法,由Nelder和Mead发现(1965年),这是用于优化多维无约束问题的一种数值方法,属于更一般的搜索算法的类别。
内点法:
内点法(Interior point methods)是一种求解线性规划或非线性凸优化问题的算法。它是由John von Neumann发明的,他利用戈尔丹的线性齐次系统提出了这种新的求解线性规划的方法。后被Narendra Karmarkar于1984年推广应用到线性规划,即Karmarkar算法。
SVD求解:
奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分解,在信号处理、统计学等领域有重要应用。奇异值分解在某些方面与对称矩阵或Hermite矩阵基于特征向量的对角化类似。然而这两种矩阵分解尽管有其相关性,但还是有明显的不同。对称阵特征向量分解的基础是谱分析,而奇异值分解则是谱分析理论在任意矩阵上的推广。