删除数字求最小值(贪心算法)

给定一个n位正整数a, 去掉其中k个数字后按原左右次序将组成一个新的正整数。对给定的a, k寻找一种方案,使得剩下的数字组成的新数最小。

提示:应用贪心算法设计求解

操作对象为n位正整数,有可能超过整数的范围,存储在数组a中,数组中每一个数组元素对应整数的一位数字。

在整数的位数固定的前提下,让高位的数字尽量小,整数的值就小。这就是所要选取的贪心策略。

每次删除一个数字,选择一个使剩下的数最小的数字作为删除对象。

当k=1时,对于n位数构成的数删除哪一位,使得剩下的数据最小。删除满足如下条件的a[i]:它是第一个a[i]>a[i+1]的数,如果不存在则删除a[n]。

当k>1(当然小于n),按上述操作一个一个删除。每删除一个数字后,后面的数字向前移位。删除一个达到最小后,再从头即从串首开始,删除第2个,依此分解为k次完成。

若删除不到k个后已无左边大于右边的降序或相等,则停止删除操作,打印剩下串的左边n−k个数字即可(相当于删除了若干个最右边的数字)。

/*
 	* 最优解是删除出现的第一个左边>右边的数,因为删除之后高位减小,
 	* 很容易想...那全局最优解也就是这个了,因为删除S个数字就相当于执行了S次删除一个数,
 	* 因为留下的数总是当前最优解...
 */
package 实验四;

import java.util.ArrayList;

public class 最小数 {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		B b=new B();
		b.setnum();
		b.run();
	}

}
class B{
	ArrayList<Integer> num=new ArrayList<Integer>();  //整数
	int k=3;	//要删掉的个数
	void setnum() {
		num.add(4);num.add(5);num.add(6);num.add(7);num.add(8);num.add(1);
		System.out.print("整数为:");
		for(int i=0;i<num.size();i++) {
			System.out.print(num.get(i)+" ");
		}
		System.out.println();
	}
	void run() {
		int i,j;
		for(i=0;i<num.size()-1&&k>0;i++) {
			for(j=0;j<num.size()-1&&k>0;j++) {
				if(num.get(j)>num.get(j+1)) {
					num.remove(j);
					k--;
				}
			}
		}
		for(i=num.size()-1;i>=0&&k>0;i--) {
			num.remove(i);
			k--;
		}
		System.out.print("删除后的最小数为:");
		for(i=0;i<num.size();i++) {
			System.out.print(num.get(i)+" ");
		}
		System.out.println();
	}
}

结果:

整数为:4 5 6 7 8 1 
删除后的最小数为:4 5 1 

    原文作者:贪心算法
    原文地址: https://blog.csdn.net/abc1498880402/article/details/83692180
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞