Walls and Gates
You are given a m x n 2D grid initialized with these three possible values.
-1 – A wall or an obstacle.
0 – A gate.
INF – Infinity means an empty room. We use the value 231 – 1 = 2147483647 to represent INF as you may assume that the distance to a gate is less than 2147483647. Fill each empty room with the distance to its nearest gate. If it is impossible to reach a gate, it should be filled with INF.
For example, given the 2D grid:
INF -1 0 INF INF INF INF -1 INF -1 INF -1 0 -1 INF INF
After running your function, the 2D grid should be:
3 -1 0 1 2 2 1 -1 1 -1 2 -1 0 -1 3 4
广度优先搜索
复杂度
时间 O(NM) 空间 O(N)
思路
实际上就是找每个房间到最近的门的距离,我们从每个门开始,广度优先搜索并记录层数就行了。如果某个房间之前被标记过距离,那就选择这个距离和当前距离中较小的那个。这题要注意剪枝,如果下一步是门或者下一步是墙或者下一步已经访问过了,就不要加入队列中。否则会超时。
代码
public class Solution {
public void wallsAndGates(int[][] rooms) {
if(rooms.length == 0) return;
for(int i = 0; i < rooms.length; i++){
for(int j = 0; j < rooms[0].length; j++){
// 如果遇到一个门,从门开始广度优先搜索,标记连通的节点到自己的距离
if(rooms[i][j] == 0) bfs(rooms, i, j);
}
}
}
public void bfs(int[][] rooms, int i, int j){
Queue<Integer> queue = new LinkedList<Integer>();
queue.offer(i * rooms[0].length + j);
int dist = 0;
// 用一个集合记录已经访问过的点
Set<Integer> visited = new HashSet<Integer>();
visited.add(i * rooms[0].length + j);
while(!queue.isEmpty()){
int size = queue.size();
// 记录深度的搜索
for(int k = 0; k < size; k++){
Integer curr = queue.poll();
int row = curr / rooms[0].length;
int col = curr % rooms[0].length;
// 选取之前标记的值和当前的距离的较小值
rooms[row][col] = Math.min(rooms[row][col], dist);
int up = (row - 1) * rooms[0].length + col;
int down = (row + 1) * rooms[0].length + col;
int left = row * rooms[0].length + col - 1;
int right = row * rooms[0].length + col + 1;
if(row > 0 && rooms[row - 1][col] > 0 && !visited.contains(up)){
queue.offer(up);
visited.add(up);
}
if(col > 0 && rooms[row][col - 1] > 0 && !visited.contains(left)){
queue.offer(left);
visited.add(left);
}
if(row < rooms.length - 1 && rooms[row + 1][col] > 0 && !visited.contains(down)){
queue.offer(down);
visited.add(down);
}
if(col < rooms[0].length - 1 && rooms[row][col + 1] > 0 && !visited.contains(right)){
queue.offer(right);
visited.add(right);
}
}
dist++;
}
}
}