上一篇最短路文章:http://blog.csdn.net/synapse7/article/details/19218865
测试数据:
8 13
5 4 0.35
4 7 0.37
5 7 0.28
5 1 0.32
4 0 0.38
0 2 0.26
3 7 0.39
1 3 0.29
7 2 0.34
6 2 0.40
3 6 0.52
6 0 0.58
6 4 0.93
测试结果:
5 to 0 : 0.73
5 to 1 : 0.32
5 to 2 : 0.62
5 to 3 : 0.61
5 to 4 : 0.35
5 to 5 : 0.00
5 to 6 : 1.13
5 to 7 : 0.28
说明:该算法亦适用于含有负权重边的图。
代码:
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<utility>
#include<functional>
using namespace std;
const int mx = 10005;
struct edge
{
double cost;
int to;
void read()
{
scanf("%d%lf", &to, &cost);
}
} e;
vector<edge> G[mx];
double disTo[mx];
bool vis[mx];
int topo[mx], cnt;
void dfs(int i)
{
vis[i] = true;
for (int j = 0; j < G[i].size(); ++j)
if (!vis[G[i][j].to]) dfs(G[i][j].to);
topo[cnt++] = i;
}
/// 有向无环图上的最短路
void dagSP(int s)
{
int i = cnt, j, v;
while (topo[--i] != s); /// 先在topo中找到s
memset(disTo, 100, sizeof(disTo));
disTo[s] = 0.0;
for (; i >= 0; --i)
{
v = topo[i];
for (j = 0; j < G[v].size(); ++j)
{
e = G[v][j]; /// v视作e.from
disTo[e.to] = min(disTo[e.to], disTo[v] + e.cost);
}
}
}
int main()
{
int n, m, i, a;
while (~scanf("%d%d", &n, &m))
{
for (i = 0; i < n; ++i) G[i].clear();
while (m--)
{
scanf("%d", &a);
e.read();
G[a].push_back(e);
}
memset(vis, 0, sizeof(vis));
cnt = 0;
for (i = 0; i < n; ++i)
if (!vis[i]) dfs(i);
dagSP(5);
for (i = 0; i < n; ++i)
printf("5 to %d : %.2f\n", i, disTo[i]);
putchar(10);
}
return 0;
}