特点:
1、线性时间内解决单点最短路径问题
2、能够处理负权边问题
3、能够找出最长路径
不足:因为是基于拓扑排序的,所以不能解决带环的问题
import java.util.ArrayList;
import java.util.Scanner;
import java.util.Stack;
import Graph.HasCycle;
public class TopDij {
static boolean[]visit;
static boolean[]onStack;
static Stack<Integer> stack;
static int n, m;
static boolean hasCycle = false;
static int[]dis;
static int INF = 99999999;
static ArrayList<EdgeS> []adj;
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
n = in.nextInt();
m = in.nextInt();
visit = new boolean[n+1];
adj = new ArrayList[n+1];
stack = new Stack<>();
dis = new int[n+1];
onStack = new boolean[n+1];
for(int i = 1; i <= n; i++ ) {
adj[i] = new ArrayList<>();
}
for(int i = 0; i < m; i++ ) {
int from = in.nextInt();
int to = in.nextInt();
int w = in.nextInt();
adj[from].add(new EdgeS(from, to, w));
}
bfs(1);
// while(!stack.isEmpty()) {
// System.out.println(stack.pop() + " ");
// }
if(!hasCycle) {
shortPath(1);
for(int i = 1; i <= n; i++ ) {
System.out.println(dis[i] + " ");
}
}
else {
System.out.println("hasCycle");
}
}
public static void shortPath(int s) {
for(int i = 1; i <= n; i++ ) {
dis[i] = 99999999;
}
dis[s] = 0;
while(!stack.isEmpty()) {
int cur = stack.pop();
for(EdgeS e: adj[cur]) {
if(dis[e.to] > dis[cur] + e.w) {
dis[e.to] = dis[cur] + e.w;
}
}
}
}
public static void bfs(int cur) {// 进行拓扑排序的同时检查是否含有环 有环的话就退出
visit[cur] = true;
onStack[cur] = true;
for(EdgeS e:adj[cur]) {
if(!visit[e.to]) {
bfs(e.to);
}
else if(onStack[e.to]){
hasCycle = true;
return;
}
}
onStack[cur] = false;
stack.push(cur);//记录拓扑排序结果 、逆后序
}
}
class EdgeS{
int from, to, w;
public EdgeS(int f, int t, int w) {
from = f;
to = t;
this.w = w;
}
}