For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format
The graph contains n nodes which are labeled from 0 to n – 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
Example 1:
Given n = 4, edges = [[1, 0], [1, 2], [1, 3]]
0
|
1
/ \
2 3
return [1]
Example 2:
Given n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2
\ | /
3
|
4
|
5
return [3, 4]
Note:
(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.
这道题最直接的方法就是遍历所有的节点构成来的树,然后得到最低的树,图的存储可以按照矩阵存储,或者使用Hash存储前边和后边,然后DFS遍历即可,但是超时了。 后来网上看到了一个做法,使用拓扑排序的做法,挺不错的,直接上代码吧!
这道题需要注意的是要学会以HashSet存储图的边。
代码如下:
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
/* * 求给定图中,能形成树的最矮的树。 * 第一直觉就是BFS,跟Topological Sorting的Kahn方法很类似, * 利用无向图每个点的degree来计算。但是却后继无力, * */
class Solution
{
public List<Integer> findMinHeightTrees(int n, int[][] edges)
{
List<Integer> leaves = new ArrayList<>();
if(n <= 1)
{
leaves.add(0);
return leaves;
}
Map<Integer, Set<Integer>> graph = new HashMap<>();
for(int i = 0; i < n; i++)
graph.put(i, new HashSet<Integer>());
for(int[] edge : edges)
{
graph.get(edge[0]).add(edge[1]);
graph.get(edge[1]).add(edge[0]);
}
for(int i = 0; i < n; i++)
{
if(graph.get(i).size() == 1)
leaves.add(i);
}
while(n > 2)
{
n -= leaves.size();
List<Integer> newLeaves = new ArrayList<>();
for(int leaf : leaves)
{
for(int newLeaf : graph.get(leaf))
{
graph.get(leaf).remove(newLeaf);
graph.get(newLeaf).remove(leaf);
if(graph.get(newLeaf).size() == 1)
newLeaves.add(newLeaf);
}
}
leaves = newLeaves;
}
return leaves;
}
/* * * 我使用的是矩阵作为图的存储, * DFS 超时 * */
public List<Integer> findMinHeightTrees11(int n, int[][] edges)
{
List<Integer> res=new ArrayList<>();
if(n<=0 || edges==null)
return res;
else if(n<=1)
{
res.add(0);
return res;
}
boolean[][] mat=new boolean[n][n];
for(int[] index : edges)
mat[index[0]][index[1]]=mat[index[1]][index[0]]=true;
int[] height=new int[n];
boolean[] visit=new boolean[n];
int min=Integer.MAX_VALUE;
for(int i=0;i<n;i++)
{
height[i]=getHeight(mat,visit,i);
min=Math.min(min,height[i]);
}
for(int i=0;i<n;i++)
{
if(height[i]==min)
res.add(i);
}
return res;
}
public int getHeight(boolean[][] mat, boolean[] visit,int root)
{
if(visit[root]==false)
{
visit[root]=true;
int maxHeight=0;
for(int i=0;i<mat.length;i++)
{
if(i!=root && mat[root][i])
maxHeight=Math.max(maxHeight, getHeight(mat, visit, i)+1);
}
visit[root]=false;
return maxHeight;
}else
return 0;
}
}
下面是C++的做法,最简单和最直接的方法就是直接对每一个结点做DFS深度优先遍历,求解每一个数的高度,然后比较得到最小值,这样做的肯定会超时,后来在网上发现了一道使用BFS广度优先的做法,方法很棒,类似拓扑排序的做法,很棒的做法
代码如下:
#include <iostream>
#include <vector>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <queue>
#include <stack>
#include <string>
#include <climits>
#include <algorithm>
#include <sstream>
#include <functional>
#include <bitset>
#include <numeric>
#include <cmath>
#include <regex>
#include <iomanip>
#include <cstdlib>
#include <ctime>
using namespace std;
class Solution
{
public:
vector<int> findMinHeightTrees(int n, vector<pair<int, int>>& edges)
{
if (n == 1)
return vector<int>(1, 0);
map<int, set<int>> mat;
for (auto i : edges)
{
mat[i.first].insert(i.second);
mat[i.second].insert(i.first);
}
vector<int> leaves;
for (auto i : mat)
{
if (i.second.size() == 1)
leaves.push_back(i.first);
}
while (n > 2)
{
n -= leaves.size();
vector<int> one;
for (auto from : leaves)
{
auto next = mat[from];
for (auto to : next)
{
mat[from].erase(to);
mat[to].erase(from);
if (mat[to].size() == 1)
one.push_back(to);
}
}
leaves = one;
}
return leaves;
}
};