import java.util.LinkedList;
import java.util.Queue;
import java.util.Stack;
public class Main {
// 存储节点信息
private Object[] vertices;
// 存储边的信息
private int[][] arcs;
private int vexnum;
// 记录第i个节点是否被访问过
private boolean[] visited;
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Graph g = new Graph(8);
Character[] vertices = { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H' };
g.addVertex(vertices);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 3);
g.addEdge(1, 4);
g.addEdge(3, 7);
g.addEdge(4, 7);
g.addEdge(2, 5);
g.addEdge(2, 6);
System.out.println("深度优先遍历:");
g.depthTraverse();
System.out.println();
System.out.println("广度优先遍历:");
g.broadTraverse();
System.out.println();
System.out.println("深度优先遍历非递归:");
g.depth();
System.out.println();
}
public Graph(int n) {
vexnum = n;
vertices = new Object[n];
arcs = new int[n][n];
visited = new boolean[n];
for (int i = 0; i < vexnum; i++) {
for (int j = 0; j < vexnum; j++) {
arcs[i][j] = 0;
}
}
}
public void addVertex(Object[] obj) {
this.vertices = obj;
}
public void addEdge(int i, int j) {
if (i == j)
return;
arcs[i][j] = 1;
arcs[j][i] = 1;
}
public int firstAdjVex(int i) {
for (int j = 0; j < vexnum; j++) {
if (arcs[i][j] > 0)
return j;
}
return -1;
}
public int nextAdjVex(int i, int k) {
for (int j = k + 1; j < vexnum; j++) {
if (arcs[i][j] > 0)
return j;
}
return -1;
}
// 深度优先遍历
public void depthTraverse() {
for (int i = 0; i < vexnum; i++) {
visited[i] = false;
}
for (int i = 0; i < vexnum; i++) {
if (!visited[i])
traverse(i);
}
}
// 一个连通图的深度递归遍历
public void traverse(int i) {
// TODO Auto-generated method stub
visited[i] = true;
visit(i);
for (int j = this.firstAdjVex(i); j >= 0; j = this.nextAdjVex(i, j)) {
if (!visited[j])
this.traverse(j);
}
}
// 广度优先遍历
public void broadTraverse() {
// LinkedList实现了Queue接口
Queue<Integer> q = new LinkedList<Integer>();
for (int i = 0; i < vexnum; i++) {
visited[i] = false;
}
for (int i = 0; i < vexnum; i++) {
if (!visited[i]) {
q.add(i);
visited[i] = true;
visit(i);
while (!q.isEmpty()) {
int j = (Integer) q.remove().intValue();
for (int k = this.firstAdjVex(j); k >= 0; k = this.nextAdjVex(j, k)) {
if (!visited[k]) {
q.add(k);
visited[k] = true;
visit(k);
}
}
}
}
}
}
private void visit(int i) {
// TODO Auto-generated method stub
System.out.print(vertices[i] + " ");
}
// 深度非递归遍历
public void depth() {
Stack<Integer> s = new Stack<Integer>();
for (int i = 0; i < vexnum; i++) {
visited[i] = false;
}
for (int i = 0; i < vexnum; i++) {
if (!visited[i]) {
s.add(i);
// 设置第i个元素已经进栈
visited[i] = true;
while (!s.isEmpty()) {
int j = (Integer) s.pop();
visit(j);
for (int k = this.lastAdjVex(j); k >= 0; k = this.lastAdjVex(j, k)) {
if (!visited[k]) {
s.add(k);
visited[k] = true;
}
}
}
}
}
}
// 最后一个
public int lastAdjVex(int i) {
for (int j = vexnum - 1; j >= 0; j--) {
if (arcs[i][j] > 0)
return j;
}
return -1;
}
// 上一个
public int lastAdjVex(int i, int k) {
for (int j = k - 1; j >= 0; j--) {
if (arcs[i][j] > 0)
return j;
}
return -1;
}
}
java语言实现图的深度优先遍历与广度优先遍历
原文作者:数据结构之图
原文地址: https://blog.csdn.net/not_in_mountain/article/details/77983996
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
原文地址: https://blog.csdn.net/not_in_mountain/article/details/77983996
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。