#include<stdio.h>
#include “StdAfx.h”
#define MAX 20
#include “malloc.h”
int visited[MAX]; //访问标志数组
typedef struct
{
char vexs[MAX]; //顶点向量
int arcs[MAX][MAX]; //邻接矩阵
int vexnum,arcnum; //图的当前顶点数和边数
}Graph;
typedef struct Qnode
{
int data;
struct Qnode *next;
}Qnode,*Queueptr;
typedef struct
{
Queueptr front;
Queueptr rear;
}Linkqueue;
void InitQueue(Linkqueue &Q)
{
Q.front=Q.rear=(Queueptr)malloc(sizeof(Qnode));
if(Q.front)
Q.front->next=NULL;
}
void EnQueue(Linkqueue &Q,int e)
{
Queueptr p;
p=(Queueptr)malloc(sizeof(Qnode));
if(p)
{
p->data=e;
p->next=NULL;
Q.rear->next=p;
Q.rear=p;
}
}
int DeQueue(Linkqueue &Q)
{
int e;
Queueptr p;
if(Q.rear!=Q.front)
{
p=Q.front->next;
e=p->data;
Q.front->next=p->next;
if(Q.rear==p)
Q.rear=Q.front;
free(p);
}
if(Q.front==p)
Q.rear=Q.front;
return e;
}
int Locatevex(Graph G,char v) //返回元素v的位置
{
int i;
for(i=0;i<G.vexnum;i++)
if(G.vexs[i]==v)
return i;
return -1;
}
void CreateGraph(Graph &G) //创建无向图的邻接矩阵
{
int i,j,w,m,n;
char a,b,c;
printf(“请输入图G的顶点数和弧数:”);
scanf(“%d%d”,&G.vexnum,&G.arcnum);
getchar();
for(i=0;i<G.vexnum;i++)
visited[i]=0;
for(i=0;i<G.vexnum;i++)
{ printf(“请输入第%d个顶点信息:”,i+1);
scanf(“%c”,&G.vexs[i]);
getchar();
}
for(i=0;i<G.vexnum;i++)
for(j=0;j<G.vexnum;j++)
G.arcs[i][j]=0;
for(i=0;i<G.arcnum;i++)
{
printf(“请输入第%d条弧依附的两个顶点及权值: “,i+1);
scanf(“%c %c %d%c”,&a,&b,&w,&c);
m=Locatevex(G,a);
n=Locatevex(G,b);
G.arcs[m][n]=w;
G.arcs[n][m]=w;
}
}
void PrintMatrix(Graph G) //输出邻接矩阵
{
int i,j;
printf(“\n由图G生成的邻接矩阵如下:\n”);
for(i=0;i<G.vexnum;++i)
{
for(j=0;j<G.vexnum;++j)
printf(“%-2d”,G.arcs[i][j]);
printf(“\n”);
}
}
int FirstAdiVex(Graph G,int v) //图G中顶点v的第一个邻接顶点
{
int i;
if(v>=0&&v<G.vexnum)
{
for(i=0;i<G.vexnum;i++)
if(G.arcs[v][i]!=0)
return i;
}
return -1;
}
int NextAdVex(Graph G,int i,int j) //图G中顶点i的第j个邻接顶点的下一个邻接顶点
{
int k;
if(i>=0&&i<G.vexnum&&j>=0&&j<G.vexnum)
{
for(k=j+1;k<G.vexnum;k++)
if(G.arcs[i][k]!=0)
return k;
}
return -1;
}
void DFS(Graph G,int v) //从第v个顶点出发深度递归遍历图
{
int u;
printf(“%2c”,G.vexs[v]);
visited[v]=1;
u=FirstAdiVex(G,v);
while(u>=0)
{
if(!visited[u])
DFS(G,u);
u=NextAdVex(G,v,u);
}
}
void BFS(Graph G)//广度非递归遍历
{
int i,w,k;
Linkqueue Q;
InitQueue(Q);
for(i=0;i<MAX;i++)
visited[i]=0;
for(i=0;i<G.vexnum;i++)
if(!visited[i])
{
visited[i]=1;
printf(“%2c”,G.vexs[i]);
EnQueue(Q,i);
while(Q.front!=Q.rear)
{
k=DeQueue(Q);
for(w=FirstAdiVex(G,k);w>=0;w=NextAdVex(G,k,w))
if(!visited[w])
{
visited[w]=1;
printf(“%2c”,G.vexs[w]);
EnQueue(Q,w);
}
}
}
}
int main()
{
int m;
Graph G;
printf(“无向图的创建及DFS和BFS的递归和非递归实现!\n\n”);
while(1)
{
printf(“1.创建无向图!\n”);
printf(“2.图的深度优先遍历!\n”);
printf(“3.图的广度优先遍历!\n”);
printf(“4.退出!\n”);
printf(“请选择功能:”);
scanf(“%d”,&m);
if(m==1)
{
CreateGraph(G);
PrintMatrix(G);
}
else if(m==2)
{
printf(“图G的深度递归优先遍历序列为:\n”);
DFS(G,0);
printf(“\n”);
}
else if(m==3)
{
printf(“图G的广度非递归优先遍历序列为:\n”);
BFS(G);
printf(“\n”);
}
else if(m==4)
{
printf(“成功退出!\n”);
break;
}
else
printf(“重新输入!\n”);
}
return 0;
}