#include <iostream>
#include <STRING>
using namespace std;
const int MaxSize = 10; //图最多10个顶点数
//邻接表存储结构
//边表节点
struct ArcNode
{
int adjvex; //邻接点域:节点在数组中的索引,0、1、2、3...
ArcNode *next; //同级子节点
};
//顶点表节点
template <class DataType>
struct VertexNode
{
DataType vertex;
ArcNode *firstEdge; //第一子节点
};
template <class DataType>
class ALGraph
{
public:
ALGraph(DataType a[], int n, int e);
~ALGraph();
void DFSTraverse(int v);
void BFSTraverse(int v);
void print();
private:
VertexNode<DataType> adjlist[MaxSize]; //顶点数组
int vertexNum, arcNum; //顶点数,边数
int visited[MaxSize], Q[MaxSize];
int front, rear;
};
/************************************************************************/
/* 关于队列
5 队尾
v4 4
| rear -> v3 3 <- 队列尾元素
| v2 2
| v1 1 <- 队列首元素
↓ front -> v0 0 队头
入队Q[++rear] = val; 对循环队列 rear = (++rear)/MaxSize; Q[rear] = val;
出队Q[++front] = val; 对循环队列 front = (++front)/MaxSize; Q[front] = val;
*/
/************************************************************************/
template <class DataType>
ALGraph<DataType>::ALGraph(DataType a[], int n, int e)
{
vertexNum = n;
arcNum = e;
for (int i = 0; i < vertexNum ; i++)
{
adjlist[i].firstEdge = NULL;
adjlist[i].vertex = a[i];
visited[i] = 0;
}
//初始化边
for (int k = 0; k < arcNum ; k++)
{
int i = 0, j = 0;
cin >>i>>j;
//将第j个节点放到i节点对应的报表的表头
ArcNode *s = new ArcNode;
s->adjvex = j;
s->next = adjlist[i].firstEdge;
adjlist[i].firstEdge = s;
//将第i个节点放到j节点对应的报表的表头
ArcNode *s2 = new ArcNode;
s2->adjvex = i;
s2->next = adjlist[j].firstEdge;
adjlist[j].firstEdge = s2;
}
}
template <class DataType>
void ALGraph<DataType>::print()
{
for (int i = 0; i < vertexNum ; i++)
{
cout << i << " -> ";
ArcNode *s = adjlist[i].firstEdge;
while (s != NULL)
{
cout << s->adjvex << "->";
s = s->next;
}
cout <<endl;
}
}
template <class DataType>
void ALGraph<DataType>::DFSTraverse(int v)
{
visited[v] = 1;
ArcNode *s = adjlist[v].firstEdge;
while(s != NULL)
{
int j = s->adjvex;
if (visited[j] == 0) {DFSTraverse(j);}
s = s->next;
}
cout << adjlist[v].vertex <<"->";
}
template <class DataType>
void ALGraph<DataType>::BFSTraverse(int v)
{
cout << adjlist[v].vertex <<"->";
visited[v] = 1;
front = rear = -1;
Q[++rear] = v; //根节点入队
while(front != rear)
{
v = Q[++front];
ArcNode *s = adjlist[v].firstEdge;
while(s != NULL){
int j = s->adjvex;
if (visited[j] == 0)
{
cout << adjlist[j].vertex <<"->" ;
visited[j] = 1;
Q[++rear] = j;
}
s = s->next;
}
}
}
int main()
{
int a[6] = {0, 1, 2, 3, 4, 5};
ALGraph<int> * test = new ALGraph<int>(a, 6, 6);
test->print();
int root;
cin >> root;
test->DFSTraverse(0);
test->BFSTraverse(0);
return 0;
}
图的邻接表存储及其遍历(使用模板)
原文作者:数据结构之图
原文地址: https://blog.csdn.net/u011450367/article/details/39829665
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
原文地址: https://blog.csdn.net/u011450367/article/details/39829665
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。