数据结构——图的广度遍历

图的广度遍历和深度遍历思想不一样。后者是用递归的方法来实现的,这个是要借助队列来实现的。
实现的基本思想如下:
1、从图中某个顶点V0出发,并访问此顶点;
2、从V0出发,访问V0的各个未曾访问的邻接点W1,W2,…,Wk;然后,依次从W1,W2,…,Wk出发访问各自未被访问的邻接点;
3、重复步骤2,直到全部顶点都被访问为止。
广度优先遍历是以层为顺序,和树的层次遍历差不多,是将某一层上的所有节点都搜索到了之后才向下一层搜索;而深度优先遍历是将某一条枝桠上的所有节点都搜索到了之后,才转向搜索另一条枝桠上的所有节点。
深度优先遍历从某个顶点出发,首先访问这个顶点,然后找出刚访问这个结点的第一个未被访问的邻结点,然后再以此邻结点为顶点,继续找它的下一个新的顶点进行访问,重复此步骤,直到所有结点都被访问完为止。
广度优先遍历从某个顶点出发,首先访问这个顶点,然后找出这个结点的所有未被访问的邻接点,访问完后再访问这些结点中第一个邻接点的所有结点,重复此方法,直到所有结点都被访问完为止。
可以看到两种方法最大的区别在于前者从顶点的第一个邻接点一直访问下去再访问顶点的第二个邻接点;后者从顶点开始访问该顶点的所有邻接点再依次向下,一层一层的访问。
在这里我是用对图的存储方式是用邻接矩阵来实现的。
这种方法是用一个一维数组来表示顶点,用一个二纬数组来实现对边的存储,若a和b之间有边,那就让二位数组中的这两个数据对应的数据中填入1;没有回路用一个很大的树来表示就好了
具体可参考图的邻接矩阵百度百科
对于图的广度遍历的具体的演示过程请看广度优先优酷
在这里给出C++的代码

原文链接

    原文作者:数据结构之图
    原文地址: https://blog.csdn.net/weixin_40581617/article/details/84583994
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞