无向图的邻接矩阵表示和遍历

#include <iostream>     
#include <string>  
#include <queue>
using namespace std;    

typedef char vertexType;    //顶点的数据类型,这里姑且设为字符,A,B,C,D
typedef int edgeType;   //边的信息,姑且定位权值
#define MAXVEX 100  //最大顶点数
bool visited[MAXVEX];   //访问标记

struct MGraph   //图结构
{
    vertexType vexs[MAXVEX];    //顶点数组
    edgeType arc[MAXVEX][MAXVEX];   //边信息,邻接矩阵
    int numVertex, numEdge; //顶点数,边数
};

void createMGraph(MGraph* G)
{
    cout << "请输入顶点数,边数:";
    cin >> G->numVertex >> G->numEdge;
    cout << "请输入每个顶点的字母表示:";
    for (int i = 0; i < G->numVertex; i++)
    {
        cin >> G->vexs[i];
    }
    for (int i = 0; i < G->numVertex; i++)
    {
        for (int j = 0; j < G->numVertex; j++)
        {
            G->arc[i][j] = INT_MAX; //边上权值初始化为正无穷,表示顶点不相邻
        }
    }
    cout << "请输入每条边的起点序号,终点序号,和边的权值:";
    for (int i = 0; i < G->numEdge; i++)
    {
        int start, end, weight;
        cin >> start >> end >> weight;
        G->arc[start][end] = weight;
        G->arc[end][start] = weight;
    }
}

void DFS(MGraph G, int i)
{
    visited[i] = true;
    cout << G.vexs[i] << " ";
    for (int j = 0; j < G.numVertex; j++)
    {
        if (G.arc[i][j] != INT_MAX && !visited[j])
        {
            DFS(G, j);
        }
    }
}

void DFSTraverse(MGraph G)
{
    for (int i = 0; i < G.numVertex; i++)
    {
        visited[i] = false;
    }
    for (int i = 0; i < G.numVertex; i++)
    {
        if (!visited[i])
        {
            DFS(G, i);
        }
    }
}

void BFSTraverse(MGraph G)
{
    queue<int> que;
    for (int i = 0; i < G.numVertex; i++)
    {
        visited[i] = false;
    }
    for (int i = 0; i < G.numVertex; i++)
    {
        if(!visited[i])
        {
            visited[i] = true;
            cout << G.vexs[i] << " ";
            que.push(i);
            while(!que.empty())
            {
                int t = que.front();
                que.pop();
                for (int j = 0; j < G.numVertex; j++)
                {
                    if (G.arc[t][j] != INT_MAX && !visited[j])
                    {
                        visited[j] = true;
                        cout << G.vexs[j] << " ";
                        que.push(j);
                    }
                }
            }
        }
    }
}

int main()    
{    
    MGraph G;
    createMGraph(&G);
    cout << "DFS访问顶点顺序:   ";
    DFSTraverse(G);
    cout << endl;
    cout << "BFS访问顶点顺序:   ";
    BFSTraverse(G);
    cout << endl;
    return 0;  
}   

    原文作者:数据结构之图
    原文地址: https://blog.csdn.net/wwj_ff/article/details/46471877
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞