【数据结构】平衡搜索树之---B树的算法实现

#include<iostream>
using namespace std;

#ifndef __BTREE_H__
#define __BTREE_H__

template<class K,int M=3>//设为三阶B树(每个数组三个关键字)
struct BNode
{
    BNode<K,M>* _parent;
    size_t _size;//元素个数
    K keys[M];//由于subs多了一个长度
    BNode<K,M> *subs[M+1];//为了使插入元素分裂时先讲该数放进数组中再调整而又不越界
    BNode()
        :_parent(NULL)
        ,_size(0)
    {
        for (int i = 0; i <= M + 1; i++)
        {
            subs[i] = NULL;//指针数组每个元素都为空指针,key不初始化,sub初始化为空指针
        }
    }
};

template<class K,class V>
struct Pair
{
    K _first;
    V _second;
    Pair(const K& key=K(),const V& value=V())
        :_first(key)
        , _second(value)
    {}
};


template<class K,int M=3>
class BTree
{
    typedef BNode<K,M> Node;
public:
    BTree()
        :_root(NULL)
    {}


    Pair<Node*,int> Find(const K& key)
    {
        if (_root == NULL)
            return Pair<Node*,int>(NULL,-1);
        //思路:根据元素的大小以及遍历每个数组的关键字判断要走哪一条支路,再逐层逐层查找
        Node* cur = _root;
        Node* parent = NULL;
        while (cur)
        {
            int index = 0;
            while (index < cur->_size)
            {
                if (cur->keys[index] > key)
                {
                    break;
                }
                else if (cur->keys[index] < key)
                {
                    index++;
                }
                else
                {
                    return Pair<Node*, int>(parent, index);
                }
            }
            parent = cur;
            cur = cur->subs[index];
        }
        return Pair<Node*, int>(parent, -1);
        //找完也没找到,为了使得该情况下方便插入节点,因此返回parent,插入节点插在parent上
    }


    bool Insert(const K& key)
    {
        //思路:若无结点,插入根节点;若有节点,找到合适位置插入在根节点上,如果此时插上该节点后
        //元素个数_size=M,则分裂,向上调整中位数,若调整后仍然是这样,则继续调整,直到不满足。
        if (_root == NULL)
        {
            _root = new Node;
            _root->keys[0] = key;
            _root->subs[0] = NULL;
            _root->_parent = NULL;
            _root->_size++;
            return true;
        }
        //若有该节点了,则不插入重复节点!!!
        if (Find(key)._second != -1)//不重复
        {
            return false;
        }
        Node* cur = Find(key)._first;//!!!根据查找到的位置直接插,避免代码冗余
        Node* sub = NULL;
        int insertKey = key;
        while (1)
        {
            _Insert(cur, sub, insertKey);//先将该元素key插入,放在该数组的合适位置
            if (cur->_size < M)//插入后,无需分裂
            {
                return true;
            }
            //需要分裂		
            int index = 0;
            Node* tmp = new Node;
            int mid = (cur->_size-1) / 2;
            //拷贝key值
            for (int i = mid + 1; i < cur->_size; i++)
            {
                tmp->keys[index++] = cur->keys[i];
                tmp->_size++;
            }
            //拷贝关键字的下标
            for (int i = mid + 1; i <= cur->_size; i++)
            {
                tmp->subs[index++] = cur->subs[i];
                if (cur->subs[i])//有子链,链上
                {
                    cur->subs[i]->_parent = tmp;
                }
            }
            cur->_size = (cur->_size - 1) / 2;//更新cur数组元素个数
            if (cur->_parent == NULL)
            {
                //分两条支路,左支路为cur,右支路为tmp链上
                _root = new Node;
                _root->keys[0] = cur->keys[mid];
                _root->subs[0] = cur;
                _root->subs[1] = tmp;
                _root->_size++;
                cur->_parent = _root;
                tmp->_parent = _root;
                return true;
            }
            else
            {			
                insertKey = cur->keys[mid];//该插入mid位置元素
                sub = tmp;//子串便成为tmp
                cur = cur->_parent;//继续调整
            }
        }
        
    }


protected:
    void _Insert(Node* cur, Node* sub,const K& key)
    {
        size_t index = cur->_size;
        while (index >= 0 && cur->keys[index]>key)//为便于key查到合适位置,先将元素往后移动1个长度到合适位置
        {
            cur->keys[index+1] = cur->keys[index];
            cur->subs[index + 1] = cur->subs[index];//下标也要更新
            index--;
        }	
        cur->keys[index+1] = key;
        cur->subs[index + 2] = sub;
        if (sub)
        {
            sub->_parent = cur;
        }
        cur->_size++;
    }
private:
    Node* _root;
};
#endif //__BTREE_H__

测试代码:

#define _CRT_SECURE_NO_WARNINGS 1
#include "BTree.h"

void BTreeTest()
{
    BTree<int,3> btree;
    int a[] = { 53, 75, 139, 49, 145, 36, 101 };
    for (int i = 0; i < sizeof(a) / sizeof(a[0]); i++)
    {
        btree.Insert(a[i]);
    }
    btree.Find(5);
}
int main()
{
    BTreeTest();
    system("pause");
    return 0;
}
    原文作者:B树
    原文地址: https://blog.csdn.net/hanjing_1995/article/details/51803745
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞