做法:在尺取的过程中用树状数组查询区间最值。复杂度O(2*n*log^2(n))
AC代码:
#include<bits/stdc++.h>
#define IO ios_base::sync_with_stdio(0),cin.tie(0),cout.tie(0)
#define pb(x) push_back(x)
#define sz(x) (int)(x).size()
#define sc(x) scanf("%d",&x)
#define pr(x) printf("%d\n",x)
#define abs(x) ((x)<0 ? -(x) : x)
#define all(x) x.begin(),x.end()
#define mk(x,y) make_pair(x,y)
#define debug printf("!!!!!!\n")
#define fin freopen("in.txt","r",stdin)
#define fout freopen("out.txt","w",stdout)
using namespace std;
typedef long long ll;
const int mod = 1e9+7;
const double PI = 4*atan(1.0);
const int maxm = 1e8+5;
const int maxn = 2e5+5;
const int INF = 0x3f3f3f3f;
const ll LINF = 1ll<<62;
int c1[maxn],c2[maxn],a[maxn];
inline int lowbit(int x){return x&(-x);}
void update1(int x,int n) //log^2(n)
{
for(int i=x;i<=n;i+=lowbit(i))
{
c1[i] = a[i];
for(int j=1;j<lowbit(i);j<<=1) c1[i] = max(c1[i],c1[i-j]);
}
}
int query1(int l,int r) //log(n)
{
int ans = -1;
while(r>=l)
{
ans = max(ans,a[r]);
r--;
for(;r-lowbit(r)>=l;r-=lowbit(r)) ans = max(ans,c1[r]);
}
return ans;
}
void update2(int x,int n) //log^2(n)
{
for(int i=x;i<=n;i+=lowbit(i))
{
c2[i] = a[i];
for(int j=1;j<lowbit(i);j<<=1) c2[i] = min(c2[i],c2[i-j]);
}
}
int query2(int l,int r) //log(n)
{
int ans = INF;
while(r>=l)
{
ans = min(ans,a[r]);
r--;
for(;r-lowbit(r)>=l;r-=lowbit(r)) ans = min(ans,c2[r]);
}
return ans;
}
int main()
{
//fin;
IO;
int n;
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
update1(i,n);
update2(i,n);
}
int ans = 0;
for(int l=1,r=1;r<=n;r++)
{
while(query1(l,r)-query2(l,r)>1) l++;
ans = max(ans,r-l+1);
}
cout<<ans<<endl;
return 0;
}