B树、B+树的区别

一、B树
1、B树的定义 
     B树是一种平衡的多分树,通常我们说m阶的B树,它必须满足如下条件: 
     (1)每个结点至多有m个子结点; 
     (2)除根结点和叶结点外,其它每个结点至少有 个子结点; 
     (3)若根结点不是叶子结点,则至少有两个子结点; 
     (4)所有的叶结点在同一层; 
     (5)有k个子结点的非根结点恰好包含k-1个关键码。
2、B树的查找 
     B树上的查找是一个顺指针查找结点和在结点内的关键码中查找交叉进行的过程。从根结点开始,在结点包含的关键码中查找给定的关键码,找到则查找成功;否则确定给定关键码可能在的子树,重复上面的操作,直到查找成功或者指针为空为止。 
     下图显示了在B树中查找关键码21的过程。

3、B树的插入 
     首先是在恰当的叶子结点中添加关键码,如果该结点中关键码不超过m-1个,则插入成功。否则要把这个结点分裂为两个。并把中间的一个关键码拿出来插到结点的父结点里去。父结点也可能是满的,就需要再分裂,再往上插。最坏的情况,这个过程可能一直传到根,如果需要分裂根,由于根是没有父结点的,这时就建立一个新的根结点。插入可能导致B树朝着根的方向生长。 
     下图显示了在B树中插入关键码33的过程。

4、B树的删除 
     B树中的删除操作与插入操作类似,但要稍微复杂些。如果删除的关键码不在叶结点层,则先把此关键码与它在B树里的后继对换位置,然后再删除该关键码。如果删除的关键码在叶结点层,则把它从它所在的结点里去掉,这可能导致此结点所包含的关键码的个数小于 -1。这种情况下,考察该结点的左或右兄弟,从兄弟结点移若干个关键码到该结点中来(这也涉及到它们的父结点中的一个关键码要做相应变化),使两个结点所含关键码个数基本相同。只有在兄弟结点的关键码个数也很少,刚好等于 -1时,这个移动不能进行。这种情况下,要把将删除关键码的结点,它的兄弟结点及它们的父结点中的一个关键码合并为一个结点。
二、B+树
1、B+树的概念 
     B+树是B树的一种变形树,它与B树的差异在于: 
     有k个子结点的结点必然有k个关键码; 
     非叶结点仅具有索引作用,跟记录有关的信息均存放在叶结点中。
2、B+树的查找 
     跟B树的查找类似,但是也有不同。由于跟记录有关的信息存放在叶结点中,查找时若在上层已找到待查的关键码,并不停止,而是继续沿指针向下一直查到叶结点层的关键码。此外,B+树的所有叶结点构成一个有序链表,可以按照关键码排序的次序遍历全部记录。上面两种方式结合起来,使得B+树非常适合范围检索。
3、B+树的插入 
     B+树的插入与B树的插入过程类似。不同的是B+树在叶结点上进行,如果叶结点中的关键码个数超过m,就必须分裂成关键码数目大致相同的两个结点,并保证上层结点中有这两个结点的最大关键码。
4、B+树的删除 
     B+树中的关键码在叶结点层删除后,其在上层的复本可以保留,作为一个"分解关键码"存在,如果因为删除而造成结点中关键码数小于 ,其处理过程与B树的处理一样。
不同于B树只适合随机检索,B+树同时支持随机检索和顺序检索,在实际中应用比较多。
------------------------另一说法-------------
B树
即二叉搜索树:
1. 所有非叶子结点至多拥有两个儿子(Left和Right);
2. 所有结点存储一个关键字;
3. 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;
如:


B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;
如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;
如:


但B树在经过多次插入与删除后,有可能导致不同的结构:


右边也是一个B树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的树结构索引;所以,使用B树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就是所谓的“平衡”问题;
实际使用的B树都是在原B树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在B树中插入和删除结点的策略;

B-树

是一种多路搜索树(并不是二叉的):
1. 定义任意非叶子结点最多只有M个儿子;且M>2;
2. 根结点的儿子数为[2, M];
3. 除根结点以外的非叶子结点的儿子数为[M/2, M];
4. 每个结点存放至少M/2-1(取上整)和至多M-1个关键字(至少2个关键字);
5. 非叶子结点的关键字个数=指向儿子的指针个数-1;
6. 非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
7. 非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
8. 所有叶子结点位于同一层;
如(M=3):


B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;
B-树的特性:
1. 关键字集合分布在整颗树中;
2. 任何一个关键字出现且只出现在一个结点中;
3. 搜索有可能在非叶子结点结束;
4. 其搜索性能等价于在关键字全集内做一次二分查找;
5. 自动层次控制;
由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少利用率,其最底搜索性能为:


其中,M为设定的非叶子结点最多子树个数,N为关键字总数;
所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;
由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;

B+树

B+树是B-树的变体,也是一种多路搜索树:
1. 其定义基本与B-树同,除了:
2. 非叶子结点的子树指针与关键字个数相同;
3. 非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);
5. 为所有叶子结点增加一个链指针;
6. 所有关键字都在叶子结点出现;
如(M=3):


B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;
B+的特性:
1. 所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;
2. 不可能在非叶子结点命中;
3. 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;
4. 更适合文件索引系统;

B*树

是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针:

B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2);
B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;
B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;
所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

小结

B树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于走右结点;
B-树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点;
所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;
B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;
B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3;

    原文作者:B树
    原文地址: https://blog.csdn.net/yangshuangtao/article/details/48766831
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞

发表评论

电子邮件地址不会被公开。 必填项已用*标注