java 前缀树实现 leetcode 208: Implement Trie (Prefix Tree)

Implement a trie with insertsearch, and startsWith methods.

1.前缀树的概念

所有含有公共前缀的字符串将挂在树中同一个结点下。实际上trie
简明的存储了存在于串集合中的所有公共前缀

2.举例说明

假如有这样一个字符串集合
X{bear,bell,bid,bull,buy,sell,stock,stop}
。它的标准
Trie
树如下图:

《java 前缀树实现 leetcode 208: Implement Trie (Prefix Tree)》
生成的树如图所示。我们可以在每个节点设置item用于存储一个单词。

3.性质

根节点不包含字符,除根节点外每一个节点都只包含一个字符;

从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串;

每个节点的所有子节点包含的字符都不相同。

4.查找

标准 Trie树的查找:

       对于英文单词的查找,我们完全可以在内部结点中建立26个元素组成的指针数组。如果要查找a,只需要在内部节点的指针数组中找第0个指针即可(b=1个指针,随机定位)。时间复杂度为O(1)

      查找过程:假如我们要在上面那棵Trie中查找字符串bull (b-u-l-l)

      (1) root结点中查找第(‘b’-‘a’=1)号孩子指针,发现该指针不为空,则定位到第1号孩子结点处——b结点。

      (2) b结点中查找第(‘u’-‘a’=20)号孩子指针,发现该指针不为空,则定位到第20号孩子结点处——u结点。

      (3) … 一直查找到叶子结点出现特殊字符‘$’位置,表示找到了bull字符串

      如果在查找过程中终止于内部结点,则表示没有找到待查找字符串。

 

 效率:

对于有n个英文字母的串来说,在内部结点中定位指针所需要花费O(d)时间,d为字母表的大小,英文为26。由于在上面的算法中内部结点指针定位使用了数组随机存储方式,因此时间复杂度降为了O(1)。但是如果是中文字,下面在实际应用中会提到。因此我们在这里还是用O(d) 查找成功的时候恰好走了一条从根结点到叶子结点的路径。因此时间复杂度为O(d*n)

      但是,当查找集合X中所有字符串两两都不共享前缀时,trie中出现最坏情况。除根之外,所有内部结点都自由一个子结点。此时的查找时间复杂度蜕化为O(d*(n^2)

5.JAVA源代码

class TrieNode {
	//存储子节点
	TrieNode[]  children=new TrieNode[26];
	//存储一条记录,即对应一个单词
	String item="";
    // Initialize your data structure here.
    public TrieNode() {
        
    }
}

public class Trie {
    private TrieNode root;

    public Trie() {
        root = new TrieNode();
    }

    // Inserts a word into the trie.
    public void insert(String word) {
       TrieNode node=this.root;
       for(char c:word.toCharArray())
       {
    	   if(node.children[c-'a']==null)
    	   {
    		   node.children[c-'a']=new TrieNode();
    	   }
    	   node=node.children[c-'a'];
       }
       node.item=word;
        
    }

    // Returns if the word is in the trie.
    public boolean search(String word) {
    	TrieNode node=this.root;
        for(char c:word.toCharArray())
        {
     	   if(node.children[c-'a']==null)
     	   {
     		   return false;
     	   }
     	   node=node.children[c-'a'];
        }
        return node.item.equals(word);
    }

    // Returns if there is any word in the trie
    // that starts with the given prefix.
    public boolean startsWith(String prefix) {
    	TrieNode node=this.root;
        for(char c:prefix.toCharArray())
        {
     	   if(node.children[c-'a']==null)
     	   {
     		   return false;
     	   }
     	   node=node.children[c-'a'];
        }
        return true;
    }

}

    原文作者:Trie树
    原文地址: https://blog.csdn.net/tingting256/article/details/50374462
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞