AVL平衡二叉树(二)

这是之前的AVL平衡二叉树的一个实现代码

点击打开链接

下面是看另一本书的实现的 没有了一重重的switch{case…},理解上不太一样,我觉得两种都可以。

//"avltree.h"
class AVL_Tree;

class AVLNode 
{
    friend AVL_Tree;
public:
    AVLNode() {LeftChild = RightChild = 0;}
    AVLNode(const int& e)
    {data = e; bf = 0; LeftChild = RightChild = 0;}
private:
    int data;
    int bf;                   // balance factor
    AVLNode *LeftChild;		// left subtree
    AVLNode *RightChild;   // right subtree
};

class AVL_Tree
{
public:
    AVL_Tree()
    {
        root = 0;
    }
    ~AVL_Tree()
    {
        Erase(root);
    }
    bool Search(const int& k,AVLNode *&f,AVLNode *&p) const;
    AVL_Tree& Insert(const int& e);
    AVL_Tree& Delete(const int& k, int& e);
    void InOut()
    {
        InOutput(root);
    }
    void PostOut()
    {
        PostOutput(root);
    }
private:
    AVLNode *root;  // root node
    void Erase(AVLNode *t);
    void InOutput(AVLNode *t);
    void PostOutput(AVLNode *t);
    void FixBF(AVLNode *,AVLNode*, const int&);
    void RRrotate(AVLNode *,AVLNode*, AVLNode *);
    void LLrotate(AVLNode *,AVLNode*, AVLNode *);
    void RLrotate(AVLNode *,AVLNode*, AVLNode *);
    void LRrotate(AVLNode *,AVLNode*, AVLNode *);
};

//"avltree.cpp"
#include "avltree.h"
#include <iostream>
#include <stack>
using namespace std;

void AVL_Tree::Erase(AVLNode *t)
{// Delete all nodes in AVL tree with root t.
    // Use a postorder traversal.
    if (t) {Erase(t->LeftChild);
    Erase(t->RightChild);
    delete t;
    }
}

bool AVL_Tree::Search(const int& k,AVLNode *&f,AVLNode *&p) const
{// Search for element that matches k.
    
    // pointer p starts at the root and moves through
    // the tree looking for an element with key k
    p = root;
    while (p) // examine p->data
    {
        if (k < p->data)
        {
            f=p;
            p = p->LeftChild;
        }
        else if (k > p->data) 
        {
            f=p;
            p = p->RightChild;
        }
        else
        {// found element
            return true;
        }
    }
    return false;
}

void AVL_Tree::FixBF(AVLNode *q,AVLNode *r, const int &e)
{// Balance factors from q to r were originally 0.
    // They need to be changed to +1 or -1.
    // Use e to find path from q to r.
    
    while (q != r)
        if (e < q->data)
        {
            // height of left subtree has increased
            q->bf = 1;
            q = q->LeftChild;}
        else 
        {
            // height of right subtree has increased
            q->bf = -1;
            q = q->RightChild;
        }
}

void AVL_Tree::LLrotate(AVLNode *PA,AVLNode *A, AVLNode *B)
{// LL rotation around A.  PA is parent of A
    // and B left child of A.
    
    // restructure subtree at A
    A->LeftChild = B->RightChild;
    B->RightChild = A;
    if (PA) // A is not the root
    {
        if (A == PA->LeftChild)
            PA->LeftChild = B;
        else 
            PA->RightChild = B;
    }
    else 
        root = B;
        
    // set balance factors
    A->bf = B->bf = 0;
}

void AVL_Tree::RRrotate(AVLNode *PA,AVLNode *A, AVLNode *B)
{// RR rotation around A.  PA is parent of A
    // and B right child of A.
    
    // restructure subtree at A
    A->RightChild = B->LeftChild;
    B->LeftChild = A;
    if (PA) // A is not the root
    {
        if (A == PA->LeftChild)
            PA->LeftChild = B;
        else 
            PA->RightChild = B;
    }
    else root = B;
        
    // set balance factors
    A->bf = B->bf = 0;
}

void AVL_Tree::LRrotate(AVLNode *PA,AVLNode *A, AVLNode *B)
{// LR rotation around A.  PA is parent of A
    // and B left child of A.
    
    AVLNode *C = B->RightChild;
    
    // restructure subtree at A
    A->LeftChild = C->RightChild;
    B->RightChild = C->LeftChild;
    C->LeftChild = B;
    C->RightChild = A;
    if (PA) // A is not the root
    {
        if (A == PA->LeftChild)
            PA->LeftChild = C;
        else PA->RightChild = C;
    }
    else root = C;
        
    // set balance factors
    int b = C->bf;
    if (b == 1)
    {
        B->bf = 0;
        A->bf = -1;
    }
    else if (b == -1) 
    {
        B->bf = 1;
        A->bf = 0;
    }
    else // b = 0
        B->bf = A->bf = 0;
    C->bf = 0;		
}

void AVL_Tree::RLrotate(AVLNode *PA,AVLNode *A, AVLNode *B)
{// RL rotation around A.  PA is parent of A
    // and B left child of A.
    
    AVLNode *C = B->LeftChild;
    
    // restructure subtree at A
    A->RightChild = C->LeftChild;
    B->LeftChild = C->RightChild;
    C->LeftChild = A;
    C->RightChild = B;
    if (PA) // A is not the root
    {
        if (A == PA->LeftChild)
            PA->LeftChild = C;
        else PA->RightChild = C;
    }
    else root = C;
        
    // set balance factors
    int b = C->bf;
    if (b == 1) 
    {
        B->bf = -1;
        A->bf = 0;
    }
    else if (b == -1) 
    {
        B->bf = 0;
        A->bf = 1;
    }
    else // b = 0
        B->bf = A->bf = 0;
    C->bf = 0;
}

AVL_Tree& AVL_Tree::Insert(const int& e)
{// Insert e if not duplicate.
    AVLNode *p = root,  // search pointer
        *pp = 0,    // parent of p
        *A = 0,     // node with bf != 0
        *PA;        // parent of A
    // find place to insert
    // also record most recent node with bf != 0
    // in A and its parent in PA
    while (p) 
    {// examine p->data
        if (p->bf) 
        {// new candidate for A node
            A = p;
            PA = pp;
        }
        pp = p;
        // move p to a child
        if (e < p->data) 
            p = p->LeftChild;
        else if (e > p->data) 
            p = p->RightChild;
        else 
            cout<<"与该值相等的元素已存在"<<endl;
    }
    
    // get a node for e and attach to pp
    AVLNode *r = new AVLNode(e);
    if (root) 
    {// tree not empty
        if (e < pp->data) 
            pp->LeftChild = r;
        else 
            pp->RightChild = r;
    }
    else 
    {// insertion into empty tree
        root = r;
        return *this;
    }	
    // see if we must rebalance or simply change
    // balance factors
    if (A) // possible rebalancing needed
    {
        if (A->bf < 0) // bf = -1 before insertion
        {
            if (e < A->data) 
            {// insertion in left subtree
                // height of left subtree has increased by 1
                // new bf of A is 0, no rebalancing
                A->bf = 0;
                // fix bf on path from A to r
                FixBF(A->LeftChild,r,e);
            }
            else 
            {// insertion in right subtree
                // bf of A is -2, rebalance
                AVLNode *B = A->RightChild;
                if (e > B->data) 
                {// RR case
                    FixBF(B->RightChild,r,e);
                    RRrotate(PA,A,B);}
                else 
                {// RL case
                    FixBF(B->LeftChild,r,e);
                    RLrotate(PA,A,B);
                }
            }
        }
        else // bf = 1 before insertion
        {
            if (e > A->data)
            {// insertion in right subtree
                // height of right subtree has increased by 1
                // new bf of A is 0, no rebalancing
                A->bf = 0;
                // fix bf on path from A to r
                FixBF(A->RightChild,r,e);
            }
            else
            {// insertion in left subtree
                // bf of A is +2, rebalance
                AVLNode *B = A->LeftChild;
                if (e < B->data) 
                {// LL case
                    FixBF(B->LeftChild,r,e);
                    LLrotate(PA,A,B);
                }
                else
                {// LR case
                    FixBF(B->RightChild,r,e);
                    LRrotate(PA,A,B);
                }
            }
        }
    }
    else // A is NULL, no rebalancing
        FixBF(root,r,e);
                
    return *this;
}

AVL_Tree& AVL_Tree::Delete(const int& k, int& e)
{// Delete element with key k and put it in e.
 // Throw BadInput exception if there is no element
 // with key k.

   // define a stack to hold path taken from root
   // to physically deleted node
   // we will not run out of stack space unless
   // the number of elements is much more than 2^60
   stack<AVLNode *> st;

   // set p to point to node with key k
   AVLNode *p = root; // search pointer
   while (p && p->data != k)
   {// move to a child of p
      st.push(p);
      if (k < p->data) 
          p = p->LeftChild;
      else 
          p = p->RightChild;
   }
   if (!p)
   {
       cout<<"要删除的值不存在"<<endl; // no element with key k
       return *this;
   }
   e = p->data;  // save element to delete

   // restructure tree
   // handle case when p has two children
   if (p->LeftChild && p->RightChild) 
   {// two children
      // convert to zero or one child case
      // find largest element in left subtree of p
      st.push(p);
      AVLNode *s = p->LeftChild;
      while (s->RightChild) 
      {// move to larger element
         st.push(s);
         s = s->RightChild;
      }

      // move largest from s to p
      p->data = s->data;
      p = s;
   }

   // p has at most one child
   // save child pointer in c
   AVLNode *c;
   if (p->LeftChild) 
       c = p->LeftChild;
   else 
       c = p->RightChild;

   // delete p
   if (p == root) 
       root = c;
   else 
   {// is p a left or right child?
        if(p == st.top()->LeftChild)
            st.top()->LeftChild = c;
        else 
            st.top()->RightChild = c;
   }
   int f = p->data; // f may not equal e
   delete p;

   // rebalance tree and correct balance factors
   // use stack to retrace path to root
   // set q to parent of deleted node
   AVLNode *q;
   if(!st.empty())
   {
       q=st.top();
       st.pop();
   }
   else
       return *this; //根节点被删

   while (q)
   {
       if (f <= q->data) 
       {
         // deleted from left subtree of q
         // height of left subtree reduced by 1
         q->bf--;
         if (q->bf == -1) // height of q is unchanged
                return *this;       // nothing more to do               
         if (q->bf == -2) 
         {// q is unbalanced
            // classify imbalance and rotate
            AVLNode *B = q->RightChild,
                         *PA;  // q is A node
                               // PA is parent of A
            if(!st.empty())
            {
                PA=st.top();
                st.pop();
            }
            else
                PA=0; // A is root
            
            switch (B->bf) 
            {
               case 0:    // L0 imbalance
                  RRrotate(PA,q,B);
                  B->bf = 1;
                  q->bf = -1;  // q is A node
                  return *this;
               case 1:    // L1 imbalance
                  RLrotate(PA,q,B);
                  break;  // must continue on path to root
               case -1:   // L-1 imbalance
                  RRrotate(PA,q,B);
             }
            q = PA;
          }
          else 
          {// q->bf is 0
              if(!st.empty())
              {
                  q=st.top();
                  st.pop();
              }
              else
                  return *this;
          }
       }
       else
         {// f > q->data
             // deleted from right subtree of q
             // height of right subtree reduced by 1
             q->bf++;
             if (q->bf == 1) // height of q is unchanged
                              // nothing more to do
                    return *this;
             if (q->bf == 2)
             {// q is unbalanced
                // classify imbalance and rotate
                AVLNode *B = q->LeftChild,
                             *PA;  // q is A node
                                   // PA is parent of A
                if(!st.empty())
                {
                    PA=st.top();
                    st.pop();
                }
                else
                    PA=0; // A is root
            
                switch (B->bf) 
                {
                   case 0:    // R0 imbalance
                      LLrotate(PA,q,B);
                      B->bf = -1;
                      q->bf = 1;  // q is A node
                      return *this;
                   case 1:    // R1 imbalance
                      LLrotate(PA,q,B);
                      break;  // must continue on path to root
                   case -1:   // R-1 imbalance
                      LRrotate(PA,q,B);
                 }
                q = PA;
                }
             else 
             {// q->bf is 0
                  if(!st.empty())
                  {
                      q=st.top();
                      st.pop();
                  }
                  else
                      return *this;
              }
            }
   }
    return *this;
}

void AVL_Tree::InOutput(AVLNode *t)
{// Output in ascending order.
    // Use an inorder traversal.
    if (t)
    {
        InOutput(t->LeftChild);
        cout << t->data << " ";
        InOutput(t->RightChild);
    }
}

void AVL_Tree::PostOutput(AVLNode *t)
{// Output in postorder.
    if (t) 
    {
        PostOutput(t->LeftChild);
        PostOutput(t->RightChild);
        cout << t->data << " ";
    }
}

#include "avltree.h"
#include <iostream>
using namespace std;

int main()
{
    AVL_Tree tree;
    int a[6]={12,43,54,1,21,3};
    for(int i=0;i<6;i++)
        tree.Insert(a[i]);
    tree.InOut();
    cout<<endl;

    tree.PostOut();
    cout<<endl;

    int e;
    tree.Delete(43,e);
    tree.InOut();
    cout<<endl;
    return 0;
}

    原文作者:平衡二叉树
    原文地址: https://blog.csdn.net/jkay_wong/article/details/6905396
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞