Structure.BSTree(二叉树、排序树、平衡树、SB树)

二叉树

BBTree 最优二叉树,包含Huffman编码

BSTree 二叉排序树

SBT SizedBalancedTree 平衡树的一种,acm竞赛中比较常用的数据结构,请参考陈启峰大牛的论文,SBT文件夹。比红黑树代码少了3/4

package Structure.BSTree;
import java.util.Collections;
import java.util.Vector;
import java.util.Stack;
/*Author: CPlusPlus小码农
 *If any question, 
 *Please contact:           
 * http://daixiecplusplus.blog.163.com/
 * QQ:1926742804
 */
class NodeInfo implements Comparable<NodeInfo>
{
    char letter_;
    int num_;
    public NodeInfo(char letter,int num){letter_ = letter ; num_ = num;}
    @Override
    public int compareTo(NodeInfo o) {
        // TODO Auto-generated method stub
        return num_ - o.num_;
    }
}

public class BBTree{
    private TreeNode<NodeInfo> root_;
    public BBTree(){root_ = null;}
    
    public void BuildBestTree(Vector<NodeInfo> v)
    {
        int size = v.size();
        for(int i = 0 ; i < size-1;++i)
        {
            Collections.sort(v);
            NodeInfo one = v.get(0);
            NodeInfo two = v.get(1);
            NodeInfo root = new NodeInfo(' ',(one.num_+two.num_));
            if(root_ == null)
            {
                root_ = new TreeNode<NodeInfo>(root,null,null);
                root_.left_ = new TreeNode<NodeInfo>(one,null,null);
                root_.right_ = new TreeNode<NodeInfo>(two,null,null);
            }
            else
            {
                TreeNode<NodeInfo> n = new TreeNode<NodeInfo>(root,null,root_);
                n.left_ = new TreeNode<NodeInfo>(one,null,null);
                root_ = n;
            }
            v.remove(one);
            v.remove(two);
            v.add(root);
        }
    }
    
    public void HuffmanCode()
    {
        Stack<Count<NodeInfo> > stack = new Stack<Count<NodeInfo> >();
        stack.push(new Count<NodeInfo>(root_));
        while(!stack.isEmpty())
        {
            Count<NodeInfo> cur = stack.peek();
            if(cur.num == 0)
            {
                if(cur.node_.left_ != null) stack.push(new Count<NodeInfo>(cur.node_.left_));
                cur.num++;
            }
            else if(cur.num == 1)
            {
                if(cur.node_.right_ != null) stack.push(new Count<NodeInfo>(cur.node_.right_));
                cur.num++;
            }
            else if(cur.num == 2)
            {
                if(cur.node_.data_.letter_ != ' ')
                {
                    StringBuffer s = new StringBuffer();
                    for(int i = 0 ; i < stack.size() -1 ; ++i)
                    {
                        Count<NodeInfo> father = stack.get(i);
                        Count<NodeInfo> son = stack.get(i+1);
                        if(father.node_.right_ == son.node_)
                        {
                            s.append('1');
                        }
                        else if(father.node_.left_ == son.node_)
                        {
                            s.append('0');
                        }
                    }
                    System.out.println(cur.node_.data_.letter_ + ": " + s);
                }
                stack.pop();
            }
        }
    }

    /**
     * @param args
     */
    public static void main(String[] args) {
        // TODO Auto-generated method stub
        Vector<NodeInfo> v = new Vector<NodeInfo>();
        v.add(new NodeInfo('C',2));
        v.add(new NodeInfo('E',7));
        v.add(new NodeInfo('S',4));
        v.add(new NodeInfo('T',5));
        
        BBTree tree = new BBTree();
        tree.BuildBestTree(v);
        
        System.out.println();
        tree.HuffmanCode();
    }

}

package Structure.BSTree;
import java.util.Iterator;
import java.util.Stack;
import java.util.LinkedList;
/*Author: CPlusPlus小码农
 *If any question, 
 *Please contact:           
 * http://daixiecplusplus.blog.163.com/
 * QQ:1926742804
 */
class TreeNode<E extends Comparable<E> >
{
    TreeNode<E> left_;
    TreeNode<E> right_;
    E data_;
    public TreeNode(E data,TreeNode<E> left,TreeNode<E> right)
    {
        data_ = data;
        left_ = left;
        right_ = right;
    }
}

class Count<E extends Comparable<E> >
{
    TreeNode<E> node_;
    int num;
    public Count(TreeNode<E> node){node_ = node; num = 0;}
}

public class BSTree<E extends Comparable<E> > {
    private TreeNode<E> root_;
    public BSTree(){root_ = null;}
    
    public TreeNode<E> GetRoot(){return root_;}
    
    public E FindKth(int kth)
    {
        return FindKth(root_,kth);
    }
    
    public void Insert(E value)
    {
        root_ = Insert(root_,value);
    }
    
    public boolean Remove(E value)
    {
        TreeNode<E> node = FindNode(root_,value);
        if( node != null)
        {
            root_ = Remove(root_,node);
            return true;
        }else return false;
    }
    
    public void InPrintByStack()
    {
        Stack<Count<E> > stack = new Stack<Count<E> >();
        stack.push(new Count<E>(root_));
        while(!stack.isEmpty())
        {
            Count<E> cur = stack.peek();
            if(cur.num == 1)
            {
                stack.pop();
                System.out.print(cur.node_.data_+ " ");
                if(cur.node_.right_ != null)
                    stack.push(new Count<E>(cur.node_.right_));
            }
            else if(cur.num == 0)
            {
                if(cur.node_.left_ != null)
                    stack.push(new Count<E>(cur.node_.left_));
                cur.num++;
            }
        }
        System.out.println();
    }
    
    public void PrePrintByStack()
    {
        Stack<TreeNode<E> > stack = new Stack<TreeNode<E>>();
        stack.push(root_);
        while(!stack.isEmpty())
        {
            TreeNode<E> cur = stack.peek();stack.pop();
            if(cur.right_ != null ) stack.push(cur.right_);
            if(cur.left_ != null) stack.push(cur.left_);
            System.out.print(cur.data_+" ");
        }
        System.out.println();
    }
    
    public void PostPrintByStack()
    {
        Stack<Count<E> > stack = new Stack<Count<E> >();
        stack.push(new Count<E>(root_));
        while(!stack.isEmpty())
        {
            Count<E> cur = stack.peek();
            if(cur.num == 2)
            {
                stack.pop();
                System.out.print(cur.node_.data_ + " ");
            }
            else if(cur.num == 1)
            {
                if(cur.node_.right_ != null)
                    stack.push(new Count<E>(cur.node_.right_));
                cur.num++;
            }
            else if(cur.num == 0)
            {
                if(cur.node_.left_ != null)
                    stack.push(new Count<E>(cur.node_.left_));
                cur.num++;
            }
        }
        System.out.println();
    }
    
    public void LevelPrintByQueue()
    {
        LevelPrintByQueue(root_);
    }
    
    public void PrePrint()
    {
        PrePrint(root_);
    }
    
    public void InPrint()
    {
        InPrint(root_);
    }
    
    public void PostPrint()
    {
        PostPrint(root_);
    }
    
    public int Height(){return Height(root_);}
    public int Size(){return Size(root_);}
    
    private void LevelPrintByQueue(TreeNode<E> root)
    {
        if(root == null) return;
        LinkedList<TreeNode<E>> upLevel = new LinkedList<TreeNode<E>>();
        LinkedList<TreeNode<E>> downLevel = new LinkedList<TreeNode<E>>();
        upLevel.add(root);
        while(!upLevel.isEmpty())
        {
            Iterator<TreeNode<E>> it = upLevel.iterator();
            while(it.hasNext())
            {
                TreeNode<E> temp = it.next();
                if(temp.left_ != null) downLevel.add(temp.left_);
                if(temp.right_ != null) downLevel.add(temp.right_);
            }
            while(!upLevel.isEmpty())
            {
                TreeNode<E> temp = upLevel.removeFirst();
                System.out.print(temp.data_+" ");
            }
            upLevel = downLevel;
            downLevel = new LinkedList<TreeNode<E>>();
        }
    }
    
    private E FindKth(TreeNode<E> root,int kth)
    {
        if(root == null) return null;
        int lcount = Size(root.left_);
        if(lcount + 1 == kth){return  root.data_;}
        else if( lcount + 1 > kth)
        {
            return FindKth(root.left_,kth);
        }else 
            return FindKth(root.right_,kth-lcount-1);
    }
    
    private TreeNode<E> Remove(TreeNode<E> root,TreeNode<E> node)
    {
        if(root == null) return null;
        else
        {
            if(root.data_.compareTo(node.data_) == 0 )
            {
                if(root.left_ == null) 
                {
                    root = root.right_;
                }
                else if(root.right_ == null)
                {
                    root = root.left_;
                }
                else
                {
                    TreeNode<E> t = FindMin(root.right_);
                    root.right_ = Remove(root.right_,t);
                    t.left_ = root.left_;
                    t.right_ = root.right_;
                    root = t;
                }
            }
            else if(root.data_.compareTo(node.data_) > 0)
            {
                root.left_ = Remove(root.left_,node);
            }else
            {
                root.right_ = Remove(root.right_,node);
            }
        }
        return root;
    }
    
    private TreeNode<E> FindNode(TreeNode<E> root,E value)
    {
        if(root == null) return null;
        if(root.data_.compareTo(value) == 0) return root;
        else
        {
            if(root.data_.compareTo(value) > 0) return FindNode(root.left_,value);
            else return FindNode(root.right_,value);
        }
    }
    
    private TreeNode<E> FindMin(TreeNode<E> root)
    {
        if(root.left_ == null) return root;
        else
        {
            TreeNode<E> t = root.left_;
            while(t.left_ != null) t = t.left_;
            return t;
        }
    }
    
    private void PostPrint(TreeNode<E> root)
    {
        if(root == null) return;
        PostPrint(root.left_);
        PostPrint(root.right_);
        System.out.print(root.data_+" ");
    }
    
    private void InPrint(TreeNode<E> root)
    {
        if(root == null) return;
        InPrint(root.left_);
        System.out.print(root.data_ +" ");
        InPrint(root.right_);
    }
    
    private void PrePrint(TreeNode<E> root)
    {
        if(root == null) return;
        System.out.print(root.data_ +" ");
        PrePrint(root.left_);
        PrePrint(root.right_);
    }
    
    private int MaxOfTwo(Integer first,Integer second)
    {
        return (first.compareTo(second)<= 0)?second:first;
    }
    
    private int Height(TreeNode<E> root)
    {
        if(root == null) return 0;
        else 
        return 1+MaxOfTwo(Height(root.left_),Height(root.right_));
    }
    
    private int Size(TreeNode<E> root)
    {
        if(root == null) return 0;
        else
        return Size(root.left_)+Size(root.right_)+1;
    }
    
    private TreeNode<E> Insert(TreeNode<E> root,E value)
    {
        if(root == null)
        {
            root = new TreeNode<E>(value,null,null);
        }
        else
        {
            if(root.data_.compareTo(value) >= 0)
            {
                root.left_ = Insert(root.left_,value);
            }
            else{ root.right_ = Insert(root.right_,value);}
        }
        return root;
    }
    
    /**
     * @param args
     */
    public static void main(String[] args) {
        // TODO Auto-generated method stub
        BSTree<Integer> tree = new BSTree<Integer>();
        tree.Insert(40);
        tree.Insert(20);
        tree.Insert(30);
        tree.Insert(50);
        tree.Insert(80);
        tree.Insert(100);
        tree.Insert(10);
        tree.Insert(60);
        tree.Insert(70);
        
        tree.InPrint();
        System.out.println();
        tree.PrePrint();
        System.out.println();
        tree.PostPrint();
        System.out.println();
        
        System.out.println(tree.Size());
        System.out.println(tree.Height());
        
        tree.Remove(0);
        tree.InPrint();
        System.out.println();
        
        tree.Remove(40);
        tree.InPrint();
        System.out.println();
        
        tree.Remove(30);
        tree.InPrint();
        System.out.println();
        
        tree.Remove(80);
        tree.InPrint();
        System.out.println();
        
        tree.Insert(10);
        tree.InPrint();
        System.out.println();
        
        tree.Remove(10);
        tree.InPrint();
        System.out.println();
        
        tree.Remove(10);
        tree.InPrint();
        System.out.println();
        System.out.println();
        
        tree.PrePrintByStack();
        tree.PrePrint();
        System.out.println();
        System.out.println();
        
        tree.PostPrintByStack();
        tree.PostPrint();
        System.out.println();
        System.out.println();
        
        tree.InPrintByStack();
        tree.InPrint();
        System.out.println();
        
        tree.LevelPrintByQueue();
    }

}

package Structure.BSTree;
/*Author: CPlusPlus小码农
 *If any question, 
 *Please contact:           
 * http://daixiecplusplus.blog.163.com/
 * QQ:1926742804
 */
class SBTreeNode<E extends Comparable<E>> {
    E key;
    SBTreeNode<E> leftChild;
    SBTreeNode<E> rightChild;
    int size;

    public SBTreeNode(E value) {
        key = value;
        leftChild = rightChild = null;
        size = 1;
    }
}

class SBTree<E extends Comparable<E>> {
    private SBTreeNode<E> root;

    public SBTreeNode<E> getRoot() {
        return root;
    }

    public SBTree() {
        root = null;
    }

    public void Insert(E v) {
        root = Insert(root, v);
    }
    
    public void Delete(E v)
    {
        SBTreeNode<E> n = Find(root,v);
        if(n != null)
        {
            root = Delete(root, n);
        }
    }
    
    public boolean Find(E v)
    {
        SBTreeNode<E> n = Find(root,v);
        return n != null ?true:false;
    }
    public E Select(int i)
    {
        SBTreeNode<E> s = Select(root,i);
        return s.key;
    }
    
    public int Size(){return Size(root);}
    public void PreOrder(){PreOrder(root);}
    public E FindMin(){return FindMin(root).key;}
    public E FindMax(){return FindMax(root).key;}
    
    private void PreOrder(SBTreeNode<E> t)
    {
        if(t == null) return;
        PreOrder(t.leftChild);
        System.out.print(t.key+", ");
        PreOrder(t.rightChild);
    }

    private SBTreeNode<E> LR(SBTreeNode<E> t) {
        SBTreeNode<E> k = t.rightChild;
        t.rightChild = k.leftChild;
        k.leftChild = t;
        k.size = Size(t);
        UpdateSize(t);
        return k;
    }
    
    private SBTreeNode<E> RR(SBTreeNode<E> t) {
        SBTreeNode<E> k = t.leftChild;
        t.leftChild = k.rightChild;
        k.rightChild = t;
        k.size = Size(t);
        UpdateSize(t);
        return k;
    }

    private int Size(SBTreeNode<E> t) {
        return t == null ? 0 : t.size;
    }
    
    private void UpdateSize(SBTreeNode<E> t)
    {
        if(t == null) return;
        t.size = Size(t.leftChild) + Size(t.rightChild) + 1;
    }

    private SBTreeNode<E> Maintain(SBTreeNode<E> t, boolean flag)
    {
        if( t == null) return t;
        if( flag == false)
        {
            if( t.leftChild != null )
            {
                if ( Size(t.leftChild.leftChild) > Size(t.rightChild))
                    t = RR(t);
                else if( Size(t.leftChild.rightChild) > Size(t.rightChild))
                {
                    t.leftChild = LR(t.leftChild);
                    t = RR(t);
                }
                else return t;
            }
            else return t;
        }
        else
        {
            if(t.rightChild != null)
            {
                if( Size(t.rightChild.rightChild) > Size(t.leftChild))
                    t = LR(t);
                else if( Size(t.rightChild.leftChild) > Size(t.leftChild))
                {
                    t.rightChild = RR(t.rightChild);
                    t = LR(t);
                }
                else return t;
            }
            else return t;
            
        }
        t.leftChild = Maintain(t.leftChild,false);
        t.rightChild = Maintain(t.rightChild,true);
        t = Maintain(t,false);
        t = Maintain(t,true);
        return t;
    }
    
    private SBTreeNode<E> Insert(SBTreeNode<E> t, E v) {
        if( t == null)
            t = new SBTreeNode<E>(v);
        else
        {
            t.size = t.size + 1;
            if( v.compareTo(t.key) < 0 )
                t.leftChild = Insert(t.leftChild,v);
            else
                t.rightChild = Insert(t.rightChild,v);
        }
        t = Maintain(t, v.compareTo(t.key) >= 0 );
        return t;
    }
    
    private SBTreeNode<E> Select(SBTreeNode<E> x, int i)
    {
        int r = Size(x.leftChild) + 1;
        if( i == r)
            return x;
        else if( i < r)
            return Select(x.leftChild,i);
        else return Select(x.rightChild, i - r);
    }
    
    private SBTreeNode<E> FindMin(SBTreeNode<E> t)
    {
        while( t.leftChild != null)
            t = t.leftChild;
        return t;
    }
    
    private SBTreeNode<E> FindMax(SBTreeNode<E> t)
    {
        while(t.rightChild != null)
            t = t.rightChild;
        return t;
    }
    
    private SBTreeNode<E> Delete(SBTreeNode<E> t,SBTreeNode<E> k)
    {
        if( t == null) return t;
        if( (k.key.compareTo(t.key) == 0) && (t.size == k.size) )
        {
            if(t.rightChild == null)
            {
                k = t.leftChild;
                t = k;
            }
            else
            {
                SBTreeNode<E> tmp = FindMin(t.rightChild);
                t.rightChild = Delete(t.rightChild,tmp);
                tmp.leftChild = t.leftChild;
                tmp.rightChild = t.rightChild;
                t = tmp;
            }
        }
        else
        {
            if( k.key.compareTo(t.key) <= 0)
                t.leftChild = Delete(t.leftChild,k);
            else
                t.rightChild = Delete(t.rightChild,k);
        }
        UpdateSize(t);
        return t;
    }
    
    private SBTreeNode<E> Find(SBTreeNode<E> t,E v)
    {
        if(t == null) return null;
        if( t.key == v) return t;
        else if( t.key.compareTo(v) < 0) return Find(t.rightChild,v);
        else return Find(t.leftChild,v);
    }
}

public class SBT {
    public static void main(String[] args)
    {
        SBTree<Integer> sbt = new SBTree<Integer>();
        sbt.Insert(10);
        sbt.Insert(11);
        sbt.Insert(12);
        sbt.Insert(5);
        sbt.Insert(9);
        sbt.Insert(18);
        sbt.Insert(22);
        sbt.Insert(17);
        
        sbt.PreOrder();
        System.out.println();
        System.out.println(sbt.Select(sbt.Size()));
        System.out.println(sbt.Find(5));
        System.out.println(sbt.Find(6));
        System.out.println(sbt.Find(22));
        
        sbt.Delete(18);
        sbt.PreOrder();
        System.out.println();
        System.out.println(sbt.FindMax());
        System.out.println(sbt.FindMin());
    }
}

    原文作者:平衡二叉树
    原文地址: https://blog.csdn.net/qq_34690598/article/details/51175115
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞