数据结构之构建平衡二叉排序树

本文解决的问题:

随机产生20个树,构建平衡二叉排序树。

实现代码如下:

#include<stdio.h>
#include<stdlib.h>

#define EH 0            /*等高*/
#define LH 1            /*左高*/
#define RH -1            /*右高*/
typedef struct btnode
{
    int data;
    int BF;
    struct btnode *lchild,*rchild;
}Btnode,*bitree;
int insert_avl_left(bitree *broot,int key,bool *taller);
int insert_avl(bitree *broot,int key,bool *taller);
int avl_left_balance(bitree *broot);
int avl_right_balance(bitree *broot);
int insert_avl_right(bitree *broot,int key,bool *taller);
//右单旋转,解决左左
int avl_left_balance_ll(bitree *broot)
{
    bitree t;
    /*
    int temp=(*broot)->data;
    t=(bitree)malloc(sizeof(btnode));
    t->data=temp;
    (*broot)->data=(*broot)->lchild->data;
    (*broot)->lchild=(*broot)->lchild->lchild;
    (*broot)->rchild=t;
    */
    t=(*broot)->lchild;
    (*broot)->lchild=NULL;
    if(t->rchild != NULL)
    {
        (*broot)->lchild=t->rchild;
    }
    t->rchild=(*broot);
    (*broot)=t;
    (*broot)->BF=EH;
    (*broot)->lchild->BF=EH;
    return 0;
}
//左右旋转,解决左右
int avl_left_balance_lr(bitree *broot)
{
    bitree t;
    /*
    int temp=(*broot)->lchild->data;
    t=(bitree)malloc(sizeof(btnode));
    t->data=temp;
    (*broot)->lchild->data=(*broot)->lchild->rchild->data;
    (*broot)->lchild->lchild=t;
    */
    switch((*broot)->lchild->rchild->BF)
    {
        case LH:
            {
                (*broot)->BF=RH;
                (*broot)->lchild->BF=EH;
                (*broot)->lchild->rchild->BF=EH;
                break;
            }
        case EH:
            {
                (*broot)->BF=EH;
                (*broot)->lchild->BF=EH;
                (*broot)->lchild->rchild->BF=EH;
                break;
            }
        case RH:
            {
                (*broot)->BF=EH;
                (*broot)->lchild->BF=LH;
                (*broot)->lchild->rchild->BF=EH;
                break;
            }
    }
    t=(*broot)->lchild;
    (*broot)->lchild=(*broot)->lchild->rchild;
    t->rchild=t->rchild->lchild;
    (*broot)->lchild->lchild=t;
    avl_left_balance_ll(broot);
    return 0;
}

//左单,解决右右
int avl_left_balance_rr(bitree *broot)
{
    bitree t;
    /*
    int temp=broot->data;
    t=(bitree)malloc(sizeof(btnode));
    t->data=temp;
    broot->data=broot->rchild->data;
    broot->rchild=broot->rchild->rchild;
    broot->lchild=t;
    */
    t=(*broot)->rchild;
    (*broot)->rchild=NULL;
    if(t->lchild != NULL)
    {
        (*broot)->rchild=t->lchild;
    }
    t->lchild=(*broot);
    (*broot)=t;
    (*broot)->BF=EH;
    (*broot)->lchild->BF=EH;
    return 0;
}
//右左旋转,解决右子树插入左侧
int avl_left_balance_rl(bitree *broot)
{
    bitree t;
    /*
    int temp=broot->rchild->data;
    t=(bitree)malloc(sizeof(btnode));
    t->data=temp;
    broot->rchild->data=broot->rchild->lchild->data;
    broot->rchild->rchild=t;
    */
    switch((*broot)->rchild->lchild->BF)
    {
        case LH:
            {
                (*broot)->BF=EH;
                (*broot)->rchild->BF=RH;
                (*broot)->rchild->lchild->BF=EH;
                break;
            }
        case EH:
            {
                (*broot)->BF=EH;
                (*broot)->rchild->BF=EH;
                (*broot)->rchild->lchild->BF=EH;
                break;
            }
        case RH:
            {
                (*broot)->BF=LH;
                (*broot)->rchild->BF=EH;
                (*broot)->rchild->lchild->BF=EH;
                break;
            }
    }
    t=(*broot)->rchild;
    (*broot)->rchild=(*broot)->rchild->lchild;
    t->lchild=NULL;
    (*broot)->rchild->rchild=t;
    avl_left_balance_rr(broot);
    return 0;
}

//对左子树失衡进行处理
int avl_left_balance(bitree *broot)
{
    bitree t=(*broot)->lchild;
    switch(t->BF){
        case LH://LL型
            return avl_left_balance_ll(broot);
        case RH://LR型
            return avl_left_balance_lr(broot);
    }
    return 0;
}
//对右子树失衡进行处理
int avl_right_balance(bitree *broot)
{
    bitree t=(*broot)->rchild;
    switch(t->BF){
        case LH://RL型
            return avl_left_balance_rl(broot);
        case RH://RR型
            return avl_left_balance_rr(broot);
    }
    return 0;
}
//查找新结点插入的子树
int insert_avl(bitree *broot,int key,bool *taller)
{
    if(key<(*broot)->data)
    {
        //进入左子树操作
        insert_avl_left(broot,key,taller);
        return 0;
    }else
    {
        //进入右子树操作
        insert_avl_right(broot,key,taller);
        return 0;
    }
}

//插入结点,判断平衡
int insert_avl_left(bitree *broot,int key,bool *taller)
{
    if((*broot)->lchild == NULL)
    {
        //如果当前节点的左子树为空,则直接插入
        bitree add;
        add=(bitree)malloc(sizeof(btnode));
        add->BF=EH;
        add->data=key;
        add->lchild=NULL;
        add->rchild=NULL;
        (*broot)->lchild=add;
        (*taller)=true;
    }else{
        insert_avl(&((*broot)->lchild),key,taller);
    }
    if((*taller) == false)
    {
        return 0;
    }
    switch((*broot)->BF){
        case EH:
            {
                (*broot)->BF=LH;
                (*taller)=true;
                return 0;
            }
        case LH:
            {//左高,插入左,失衡
                avl_left_balance(broot);
                (*taller)=false;
                return 0;
            }
        case RH:
            {//右高,插入左,均衡
                (*broot)->BF=EH;
                (*taller)=false;
                return 0;
            }
    }
    return 0;
}

int insert_avl_right(bitree *broot,int key,bool *taller)
{
    if((*broot)->rchild == NULL)
    {
        //如果当前节点的左子树为空,则直接插入
        bitree add;
        add=(bitree)malloc(sizeof(btnode));
        add->BF=EH;
        add->data=key;
        add->lchild=NULL;
        add->rchild=NULL;
        (*broot)->rchild=add;
        (*taller)=true;
    }else{
        insert_avl(&((*broot)->rchild),key,taller);
    }
    if((*taller) == false)
    {
        return 0;
    }
    switch((*broot)->BF){
        case EH:
            {
                (*broot)->BF=RH;
                (*taller)=true;
                return 0;
            }
        case LH:
            {//左高,插入右,均衡
                (*broot)->BF=EH;
                (*taller)=false;
                return 0;
            }
        case RH:
            {//右高,插入右,失衡
                avl_right_balance(broot);
                (*taller)=false;
                return 0;
            }
    }
    return 0;
}

//插入新的结点
int creat_avl(bitree *broot,int key)
{
    bool taller=false;
    if((*broot)->data == NULL)
    {
        (*broot)->data=key;
        (*broot)->BF=EH;
        (*broot)->lchild=NULL;
        (*broot)->rchild;
        return 0;
    }else{
        return insert_avl(broot,key,&taller);
    }
}

void preErgodic_recu(bitree root)
{
    if(root)
    {
        printf("%d ",root->data);
        preErgodic_recu(root->lchild);
        preErgodic_recu(root->rchild);
    }
}


int main(){
    bitree broot;
    int i;
    broot=(bitree)malloc(sizeof(btnode));
    broot->BF=EH;
    broot->data=NULL;
    broot->lchild=NULL;
    broot->rchild=NULL;
    //int a[20]={52,28,45,29,36,35,51,46,47,100,75,59,63,72,68,73,85,76,98,92};
    int a[]={52,28,45,29,36,35,51,46,47,100,75,59,63,72,68,73,85,76,98,92};
    for(i=0;i<20;i++)
    {
        creat_avl(&broot,a[i]);
    }
    preErgodic_recu(broot);
    return 0;
}

如有疑问,请及时提出,谢谢!

———————————————————————————————————————————

    原文作者:平衡二叉树
    原文地址: https://blog.csdn.net/zly412934578/article/details/79146961
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞