【数据结构】AVLTree(高度平衡的二叉搜索树)

  • AVL树

AVL树又称为高度平衡的二叉搜索树,是1962年有俄罗斯的数学家G.M.Adel’son-Vel’skii和E.M.Landis提出来的。它能保持二叉树的高度平衡,尽量降低二叉树的高度,减少树的平均搜索长度。

  • AVL树的性质
  1. 左子树和右子树的高度之差的绝对值不超过1
  2. 树中的每个左子树和右子树都是AVL树
  3. 每个节点都有一个平衡因子(balance factor bf),任一节点的平衡因子是1,0,-1.(每个节点的平衡因子等于右子树的高度减去左子树的高度)                                                                                                                                
  • AVL树的效率

一棵AVL树有N个节点,其高度可以保持在log2N,插入/删除/查找的时间复杂度也是log2N。 (ps:log2N是表示log以2为底N的对数,evernote不支持公式。)

//AVLTree.h

#pragma once

template<class K,class V>
struct AVLTreeNode
{
    AVLTreeNode<K,V>* _left;
    AVLTreeNode<K,V>* _right;
    AVLTreeNode<K,V>* _parent;

    K _key;
    V _value;
    int _bf;

    AVLTreeNode(const K& key,const V& value)
        :_left(NULL)
        ,_right(NULL)
        ,_parent(NULL)
        ,_key(key)
        ,_value(value)
        ,_bf(0)
    {}
};

template<class K,class V>
class AVLTree
{
    typedef AVLTreeNode<K,V> Node;
public:
    AVLTree()
        :_root(NULL)
    {}

    bool Insert(const K& key,const V& value)
    {
        //插入节点
        if(_root == NULL)
        {
            _root = new Node(key,value);
        }
        Node* cur = _root;
        Node* parent = NULL;
        while(cur)
        {
            if(cur->_key < key)
            {
                parent = cur;
                cur = cur->_right;
            }
            else if(cur->_key > key)
            {
                parent = cur;
                cur = cur->_left;
            }
            else
                return false;
        }
        cur = new Node(key,value);
        if(parent->_key < key)
        {
            parent->_right = cur;
            cur->_parent = parent;
        }
        else
        {
            parent->_left = cur;
            cur->_parent = parent;
        }

        //更新平衡因子
        while(parent)
        {
            //右孩子平衡因子加1,左孩子平衡因子减1
            if(parent->_right == cur)
                parent->_bf ++;
            else if(parent->_left == cur)
                parent->_bf --;
    
            if(parent->_bf == 0)
                break;
            else if(parent->_bf == 1 || parent->_bf == -1)
            {
                cur = parent;
                parent = cur->_parent;
            }
            else	//_bf = 2 || -2
            {
                if(parent->_bf == 2)	//parent->_bf == 2
                {
                    if(cur->_bf == 1)
                        RotateL(parent);
                    else	//_bf = -1
                        RotateRL(parent);
                }
                else if(parent->_bf == -2)	//parent->_bf == -2
                {
                    if(cur->_bf == -1)
                        RotateR(parent);
                    else	//_bf = 1
                        RotateLR(parent);
                }
                return true;
            }
        }
        return true;
    }
    void RotateL(Node* parent)
    {
        Node* subR = parent->_right;
        Node* subRL = subR->_left;
        parent->_right = subRL;
        if(subRL)
        {
            subRL->_parent = parent;
        }
        subR->_left = parent;
        Node* ppNode = parent->_parent;
        parent->_parent = subR;

        if(ppNode == NULL)
        {
            _root = subR;
            subR->_parent = NULL;
        }
        else
        {
            if(ppNode->_left == parent)
            {
                ppNode->_left = subR;
                subR->_parent = ppNode;
            }
            else
            {
                ppNode->_right = subR;
                subR->_parent = ppNode;
            }
        }
        subR->_bf = parent->_bf = 0;
    }
    void RotateR(Node* parent)
    {
        Node* subL = parent->_left;
        Node* subLR = subL->_right;
        parent->_left = subLR;
        if(subLR)
        {
            subLR->_parent = parent;
        }
        subL->_right = parent;

        Node* ppNode = parent->_parent;
        parent->_parent = subL;
        
        //判断parent是否有父亲节点
        if(ppNode == NULL)
        {
            _root = subL;
            subL->_parent = NULL;
        }
        else
        {
            if(ppNode->_left == parent)
            {
                ppNode->_left = subL;
                subL->_parent = ppNode;
            }
            else
            {
                ppNode->_right = subL;
                subL->_parent = ppNode;
            }
        }
        subL->_bf = parent->_bf = 0;
    }
    void RotateRL(Node* parent)
    {
        Node* subR = parent->_right;
        Node* subRL = subR->_left;
        int bf = subRL->_bf;

        RotateR(parent->_right);
        RotateL(parent);

        if(bf == 1)
        {
            subR->_bf = 0;
            parent->_bf = -1;
        }
        else if(bf == -1)
        {
            parent->_bf = 0;
            subR->_bf = 1;
        }
        else
        {
            subR->_bf = parent->_bf = 0;
        }
        subRL->_bf = 0;
    }
    void RotateLR(Node* parent)
    {
        Node* subL = parent->_left;
        Node* subLR = subL->_right;
        int bf = subLR->_bf;

        RotateL(parent->_left);
        RotateR(parent);

        if(bf == 1)
        {
            subL->_bf = -1;
            parent->_bf = 0;
        }
        else if(bf == -1)
        {
            parent->_bf = 1;
            subL->_bf = 0;
        }
        else 
        {
            subL->_bf = parent->_bf = 0;
        }
        subLR->_bf = 0;
    }

    void InOrder()
    {
        _InOrder(_root);
        cout<<endl;
    }

    int Height(Node* root)
    {
        if(root == NULL)
        {
            return 0;
        }
        int left = Height(root->_left);
        int right = Height(root->_right);

        return left > right ? (left+1) : (right+1); 
    }

    bool IsBlance()
    {
        return _IsBlance(_root);
    }

    bool _IsBlance(Node* root)
    {
        if(root == NULL)
        {
            return true;
        }
        int left = Height(root->_left);
        int right = Height(root->_right);

        if((right-left) != root->_bf)
        {
            cout<<"平衡因子异常"<<root->_key<<endl;
            return false;
        }
        return abs(right-left < 2)
            && _IsBlance(root->_left)
            && _IsBlance(root->_right);
    }

    void _InOrder(Node* root)
    {
        if(root == NULL)
        {
            return;
        }
        _InOrder(root->_left);
        cout<<root->_key<<" ";
        _InOrder(root->_right);
    }

protected:
    Node* _root;
};

void TestTree()
{
    AVLTree<int,int> tree;
    int a[]={16, 3, 7, 11, 9, 26, 18, 14, 15};
    for(size_t i = 0; i < sizeof(a)/sizeof(a[0]); ++i)
    {
        tree.Insert(a[i],i);
    }
    tree.InOrder();
    cout<<"Blance?"<<tree.IsBlance()<<endl;
    getchar();
}

void TestTree1()
{
    AVLTree<int,int> tree1;
    int array1[]={4, 2, 6, 1, 3, 5, 15, 7, 16, 14};
    for(size_t i = 0; i < sizeof(array1)/sizeof(array1[0]); ++i)
    {
        tree1.Insert(array1[i],i);
    }
    tree1.InOrder();
    cout<<"Blance?"<<tree1.IsBlance()<<endl;
    getchar();
}
//Test.cpp

#include<iostream>
using namespace std;

#include"AVLTree.h"

int main()
{
    //TestTree();
    TestTree1();
    getchar();
    return 0;
}

    原文作者:平衡二叉树
    原文地址: https://blog.csdn.net/zx_yhy/article/details/51863974
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞