java数据结构——BinarySearchTree(二叉查找树)

package com.tig.tree;

/**
 * 二叉查找树
 * @author Tig
 * @param <E>
 *
 */
public class BinarySearchTree<E extends Comparable<? super E>> {
    
    private BinaryNode<E> root;
    
    public BinarySearchTree() {
        root = null;
    }
    
    public void makeEmpty() {
        root = null;
    }
    
    public boolean isEmpty() {
        return root == null;
    }
    
    public boolean contains(E e) {
        
        return contains(e, root);
    }
    
    public boolean contains(E e, BinaryNode<E> t) {
        
        if (t == null) {
            return false;
        }
        
        int compareResult = e.compareTo(t.element);
        
        if (compareResult < 0) {
            
            return contains(e, t.left);
        } else if (compareResult > 0) {
            
            return contains(e, t.right);
        } else {
            
            return true;
        }
    }
    
    public E findMin() {
        
        if ( isEmpty() ) {
            throw new RuntimeException("树为空");
        }
        
        
        return findMin(root).element;
    }
    
    private BinaryNode<E> findMin(BinaryNode<E> t) {
        
        if (t == null) {
            
            return null;
        } else if (t.left == null) {
            
            return t;
        }
        
        return findMin(t.left);
    }

    public E findMax() {
        
        if ( isEmpty() ) {
            throw new RuntimeException("树为空");
        }
        
        return findMax(root).element;
    }
    
    private BinaryNode<E> findMax(BinaryNode<E> t) {
        
        if (t != null) {
            while (t.right != null) {
                t = t.right;
            }
        }
        
        return t;
    }
    
    public void insert(E e) {
        root = insert(e, root);
    }
    
    private BinaryNode<E> insert(E e, BinaryNode<E> t) {
        
        if (t == null) {
            return new BinaryNode<E>(e);
        }
        
        int compareResult = e.compareTo(t.element);
        
        if (compareResult < 0) {
            
            t.left = insert(e, t.left);
        } else if (compareResult > 0) {
            
            t.right = insert(e, t.right);
        } else 
        
            ;	// do nothing
        
        return t;
    }
    
    public void remove(E e) {
        
        root = remove(e, root);
    }

    private BinaryNode<E> remove(E e, BinaryNode<E> t) {
        
        if (t == null) {
            return t;	
        }
        
        int compareResult = e.compareTo(t.element);
        
        if (compareResult < 0) {
            
            t.left = remove(e, t.left);
        } else if (compareResult > 0) {
            
            t.right = remove(e, t.right);
        } else if (t.left != null && t.right != null) {	//Two children
            
            t.element = findMin(t.right).element;
            t.right = remove(t.element, t.right);
        } else {	//One child
            
            t = (t.left != null) ? t.left : t.right;
        }
        
        return t;
    }

    public void printTree() {
        
        if ( isEmpty() ) {
            
            System.out.println("Empty tree");
        } else {
            
            printTree(root);
        }
    }
    
    private void printTree(BinaryNode<E> t) {
        
        if (t != null) {
            
            printTree(t.left);
            System.out.println(t.element);
            printTree(t.right);
        }
    }

    private static class BinaryNode<E> {
        
        E element;
        
        BinaryNode<E> left;
        
        BinaryNode<E> right;
        
        public BinaryNode(E element) {
            this(element, null, null);
        }

        public BinaryNode(E element, BinaryNode<E> left, BinaryNode<E> right) {
            this.element = element;
            this.left = left;
            this.right = right;
        }
    }
    
}

测试case:

package com.tig.tree;

import org.junit.Test;

public class BinarySearchTreeTest {

    @Test
    public void test() {
        
        BinarySearchTree<Integer> tree = new BinarySearchTree<>();
    
        for (int i = 0; i < 10; i++) {
            tree.insert(i);
        }
        
        System.out.println("最大:" + tree.findMax());
        System.out.println("最小:" + tree.findMin());
    
        tree.remove(5);
        tree.printTree();
    }

}


    原文作者:二叉查找树
    原文地址: https://blog.csdn.net/qq_25448409/article/details/68610281
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞