// BinarySearchTree class
//
// CONSTRUCTION: with no initializer
//
// ******************PUBLIC OPERATIONS*********************
// void insert( x ) --> Insert x
// void remove( x ) --> Remove x
// boolean contains( x ) --> Return true if x is present
// Comparable findMin( ) --> Return smallest item
// Comparable findMax( ) --> Return largest item
// boolean isEmpty( ) --> Return true if empty; else false
// void makeEmpty( ) --> Remove all items
// void printTree( ) --> Print tree in sorted order
// ******************ERRORS********************************
// Throws UnderflowException as appropriate
/* * Implements an unbalanced binary search tree. * Note that all "matching" is based on the compareTo method. */
public class MyBST<AnyType extends Comparable<? super AnyType>>
{
//@// Fields
private BinaryNode<AnyType> root;
//@// Constructors
public MyBST()
{
root = null;
}
//@// Classes
private static class BinaryNode<AnyType>
{
BinaryNode(AnyType theElement)
{
this(theElement,null,null);
}
BinaryNode(AnyType theElement, BinaryNode<AnyType> lt, BinaryNode<AnyType> rt)
{
element = theElement;
left = lt;
right = rt;
}
AnyType element;
BinaryNode<AnyType> left;
BinaryNode<AnyType> right;
}
//@// Methods
public void makeEmpty()
{
root = null;
}
public boolean isEmpty()
{
return root==null;
}
public void printTree()
{
if(isEmpty())
System.out.println("Empty tree");
else
printTree(root);
}
private void printTree(BinaryNode<AnyType> t)
{
if(t!=null)
{
printTree(t.left);
System.out.println(t.element);
printTree(t.left);
}
}
private int height(BinaryNode<AnyType> t)
{
if(t==null)
return -1;
else
return 1+Math.max(height(t.left),height(t.right));
}
public AnyType findMin()
{
if(isEmpty())
throw new UnderflowException();
return findMin(root).element;
}
private BinaryNode<AnyType> findMin(BinaryNode<AnyType> t)
{
if(t==null)
return null;
else if(t.left==null)
return t;
return findMin(t.left);
}
public AnyType findMax()
{
if(isEmpty())
throw new UnderflowException();
return findMax(root).element;
}
private BinaryNode<AnyType> findMax(BinaryNode<AnyType> t)
{
if(t!=null)
while(t.right!=null)
t = t.right;
return t;
// using while to replcae the tail-loop in findMin()
}
public boolean contains(AnyType x)
{
return contains(x,root);
}
private boolean contains(AnyType x, BinaryNode<AnyType> t)
{
if(t==null)
return false;
int compareResult = x.compareTo(t.element);
if(compareResult<0)
return contains(x,t.left);
else if(compareResult>0)
return contains(x,t.right);
else
return true;
}
public void insert(AnyType x)
{
root = insert(x,root);
}
private BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> t)
{
if(t==null)
return new BinaryNode<>(x,null,null);
int compareResult = x.compareTo(t.element);
if(compareResult<0)
t.left = insert(x,t.left);
else if(compareResult>0)
t.right = insert(x,t.right);
else
;
return t;
}
public void remove(AnyType x)
{
root = remove(x,root);
}
private BinaryNode<AnyType> remove(AnyType x, BinaryNode<AnyType> t)
{
if(t==null)
return t;
int compareResult = x.compareTo(t.element);
if(compareResult<0)
t.left = remove(x,t.left);
else if(compareResult>0)
t.right = remove(x,t.right);
else if(t.left!=null && t.right!=null) // two children
{
t.element = findMin(t.right).element;
t.right = remove(t.element, t.right);
}
else
t = (t.left!=null) ? t.left : t.right; // one child
return t;
}
// Test program
public static void main(String[] args)
{
MyBST<Integer> t = new MyBST<>();
final int NUMS = 4000;
final int GAP = 37;
System.out.println("Checking... (no more output means success)");
for(int i=GAP; i!=0; i=(i+GAP)%NUMS)
t.insert(i);
for(int i=1; i<NUMS; i+=2)
t.remove(i);
if(NUMS<40)
t.printTree();
if(t.findMin()!=2 || t.findMax()!=NUMS-2)
System.out.println("FindMin or FindMax error!");
for(int i=2; i<NUMS; i+=2)
if(!t.contains(i))
System.out.println("FInd error1!");
for(int i=1; i<NUMS; i+=2)
{
if(t.contains(i))
System.out.println("Find error2!");
}
}
}
数据结构与算法分析(三) —— 二叉查找树的实现
原文作者:二叉查找树
原文地址: https://blog.csdn.net/lipengcn/article/details/51942797
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
原文地址: https://blog.csdn.net/lipengcn/article/details/51942797
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。