二叉查找树BST

linux已经实现了二叉树的查找,增加,删除。

TSEARCH(3)                 Linux Programmer’s Manual                TSEARCH(3)

NAME
       tsearch, tfind, tdelete, twalk, tdestroy - manage a binary tree

SYNOPSIS
       #include <search.h>

       void *tsearch(const void *key, void **rootp,
                       int (*compar)(const void *, const void *));

       void *tfind(const void *key, const void **rootp,
                       int (*compar)(const void *, const void *));

       void *tdelete(const void *key, void **rootp,
                       int (*compar)(const void *, const void *));

       void twalk(const void *root, void (*action)(const void *nodep,
                                          const VISIT which,
                                          const int depth));

       #define _GNU_SOURCE
       #include <search.h>

       void tdestroy(void *root, void (*free_node)(void *nodep));

下面的链接是openBSD里面实现的tsearch源码

http://ftp.usa.openbsd.org/pub/OpenBSD/src/lib/libc/stdlib/tsearch.c

/*	$OpenBSD: tsearch.c,v 1.10 2015/09/26 16:03:48 guenther Exp $	*/

/*
 * Tree search generalized from Knuth (6.2.2) Algorithm T just like
 * the AT&T man page says.
 *
 * The node_t structure is for internal use only
 *
 * Written by reading the System V Interface Definition, not the code.
 *
 * Totally public domain.
 */

#include <search.h>
#include <stdlib.h>

typedef struct node_t {
    char	  *key;
    struct node_t *left, *right;
} node;

/* find or insert datum into search tree */
void *
tsearch(const void *vkey, void **vrootp,
    int (*compar)(const void *, const void *))
{
    node *q;
    char *key = (char *)vkey;
    node **rootp = (node **)vrootp;

    if (rootp == (struct node_t **)0)
	return ((void *)0);
    while (*rootp != (struct node_t *)0) {	/* Knuth's T1: */
	int r;

	if ((r = (*compar)(key, (*rootp)->key)) == 0)	/* T2: */
	    return ((void *)*rootp);		/* we found it! */
	rootp = (r < 0) ?
	    &(*rootp)->left :		/* T3: follow left branch */
	    &(*rootp)->right;		/* T4: follow right branch */
    }
    q = malloc(sizeof(node));	/* T5: key not found */
    if (q != (struct node_t *)0) {	/* make new node */
	*rootp = q;			/* link new node to old */
	q->key = key;			/* initialize new node */
	q->left = q->right = (struct node_t *)0;
    }
    return ((void *)q);
}

/* delete node with given key */
void *
tdelete(const void *vkey, void **vrootp,
    int (*compar)(const void *, const void *))
{
    node **rootp = (node **)vrootp;
    char *key = (char *)vkey;
    node *p = (node *)1;
    node *q;
    node *r;
    int cmp;

    if (rootp == (struct node_t **)0 || *rootp == (struct node_t *)0)
	return ((struct node_t *)0);
    while ((cmp = (*compar)(key, (*rootp)->key)) != 0) {
	p = *rootp;
	rootp = (cmp < 0) ?
	    &(*rootp)->left :		/* follow left branch */
	    &(*rootp)->right;		/* follow right branch */
	if (*rootp == (struct node_t *)0)
	    return ((void *)0);		/* key not found */
    }
    r = (*rootp)->right;			/* D1: */
    if ((q = (*rootp)->left) == (struct node_t *)0)	/* Left (struct node_t *)0? */
	q = r;
    else if (r != (struct node_t *)0) {		/* Right link is null? */
	if (r->left == (struct node_t *)0) {	/* D2: Find successor */
	    r->left = q;
	    q = r;
	} else {			/* D3: Find (struct node_t *)0 link */
	    for (q = r->left; q->left != (struct node_t *)0; q = r->left)
		r = q;
	    r->left = q->right;
	    q->left = (*rootp)->left;
	    q->right = (*rootp)->right;
	}
    }
    free((struct node_t *) *rootp);	/* D4: Free node */
    *rootp = q;				/* link parent to new node */
    return(p);
}

/* Walk the nodes of a tree */
static void
trecurse(node *root, void (*action)(const void *, VISIT, int), int level)
{
    if (root->left == (struct node_t *)0 && root->right == (struct node_t *)0)
	(*action)(root, leaf, level);
    else {
	(*action)(root, preorder, level);
	if (root->left != (struct node_t *)0)
	    trecurse(root->left, action, level + 1);
	(*action)(root, postorder, level);
	if (root->right != (struct node_t *)0)
	    trecurse(root->right, action, level + 1);
	(*action)(root, endorder, level);
    }
}

/* Walk the nodes of a tree */
void
twalk(const void *vroot, void (*action)(const void *, VISIT, int))
{
    node *root = (node *)vroot;

    if (root != (node *)0 && action != (void (*)(const void *, VISIT, int))0)
	trecurse(root, action, 0);
}

http://ftp.usa.openbsd.org/pub/OpenBSD/src/lib/libc/stdlib/tfind.c

/*	$OpenBSD: tfind.c,v 1.7 2015/09/26 16:03:48 guenther Exp $	*/

/*
 * Tree search generalized from Knuth (6.2.2) Algorithm T just like
 * the AT&T man page says.
 *
 * The node_t structure is for internal use only
 *
 * Written by reading the System V Interface Definition, not the code.
 *
 * Totally public domain.
 */
#include <search.h>

typedef struct node_t
{
    char	  *key;
    struct node_t *llink, *rlink;
} node;

/* find a node, or return 0 */
void *
tfind(const void *vkey, void * const *vrootp,
    int (*compar)(const void *, const void *))
{
    char *key = (char *)vkey;
    node **rootp = (node **)vrootp;

    if (rootp == (struct node_t **)0)
	return ((struct node_t *)0);
    while (*rootp != (struct node_t *)0) {	/* T1: */
	int r;
	if ((r = (*compar)(key, (*rootp)->key)) == 0)	/* T2: */
	    return (*rootp);		/* key found */
	rootp = (r < 0) ?
	    &(*rootp)->llink :		/* T3: follow left branch */
	    &(*rootp)->rlink;		/* T4: follow right branch */
    }
    return (node *)0;
}

哈希表与二叉查找树的优劣势:

1.哈希表在查找,增加,删除方面的时间复杂度都为O(1),而二叉查找树而O(log n),所以哈希表在处理时间上比较有优势

2.BST是比较容易实现,哈希表在选择哈希函数和解决冲突方面处理比较麻烦

3.BST是已经排序好的树,左节点值 < 父节点值< 右节点值

    原文作者:二叉查找树
    原文地址: https://blog.csdn.net/jackywgw/article/details/51065460
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞