#ifndef _HJ_STL_BST_H_
#define _HJ_STL_BST_H_
/* * Author:hujian * Time:2016/5/8 * discription:this file is about binary search tree<BST>. * * NOTICE:you should not use hjstl_vector in anywhere. * because the hjstl_vector has too much bugs. * it not work till now. * NOTICE:if you find bugs,please connect me with E-mail or WeChat *E-mail:1425124481@qq.com & hujianshiwo&nankai.edu.cn *WeChat:HUJIAN000000 * */
#define _HJSTL_BST_PUBLIC public
#define _HJSTL_BST_PRINATE private
#define _HJSTL_BST_PROTECTED protected
///this is the node of bst
///
template<class Type>
struct _HJSTL_BST_Node_{
_HJSTL_BST_Node_() :_L_child(NULL), _R_child(NULL){}
Type value;//node's value
_HJSTL_BST_Node_* _L_child, *_R_child;//left child and right child
};//end of bst node
///this is the class about BST
template<class Type>
class _HJSTL_BST{
_HJSTL_BST_PRINATE:
typedef _HJSTL_BST_Node_<Type> node_type;
typedef node_type* node_pointer;
typedef const node_type* const_node_pointer;
typedef node_type& reference;
typedef const node_type& const_reference;
typedef size_t size_type;
//you can not access the root and size.
_HJSTL_BST_PRINATE:
//this is the root of this BST
node_pointer root;
//the node's num<size>
size_t size_;
_HJSTL_BST_PUBLIC:
_HJSTL_BST() :root(NULL),size_(0){}
_HJSTL_BST(_HJSTL_BST<Type>&x){ root = x.root, size_ = x.size_; }
//empty?
bool empty(){ return size_ == 0; }
//size of this bst
size_type size(){ return size_; }
//get the root
node_pointer ROOT(){ return root; }
//insert
void insert(const Type& x){ insert_aux(root, x); }
//find
bool find(const Type&x) { return find_aux(root, x); }
//delete node
void remove(const Type&x){
//if you want to delete root
if (root->value == x){
if (root->_L_child == NULL&&root->_R_child == NULL){
root = NULL;
size_--;
}
else if (root->_L_child != NULL){
root = root->_L_child;
size_--;
}
else if (root->_R_child != NULL){
root = root->_R_child;
size_--;
}
return;
}
if (remove_aux(root, x)) size_--;
}
_HJSTL_BST_PRINATE:
//insert node
node_pointer insert_aux(node_pointer& cur,const Type&x);
//find value
bool find_aux(node_pointer cur,const Type&x);
//delete node
node_pointer remove_aux(node_pointer cur,const Type&x);
};//end of bst
//implement the code.
template<class Type>
_HJSTL_BST_Node_<Type>* _HJSTL_BST<Type>::insert_aux(_HJSTL_BST_Node_<Type>*& cur, const Type& x)
{
if (cur == NULL){//this node is empty,so we find the position to insert
cur = new _HJSTL_BST_Node_<Type>();
cur->value = x;
cur->_L_child = cur->_R_child = NULL;
size_++;
return cur;
}
else{//find the position and insert the node
if (x < cur->value) insert_aux(cur->_L_child, x);
else insert_aux(cur->_R_child, x);
}
}
//find
template<class Type>
bool _HJSTL_BST<Type>::find_aux(_HJSTL_BST_Node_<Type>* cur, const Type& x)
{
if (cur == NULL) return false;
else if (x == cur->value) return true;
else if (x < cur->value) return find_aux(cur->_L_child, x);
else find_aux(cur->_R_child, x);
}
template<class Type>
_HJSTL_BST_Node_<Type>* _HJSTL_BST<Type>::remove_aux(_HJSTL_BST_Node_<Type>* cur, const Type& x)
{
//no find node's value=x
if (cur == NULL) return NULL;
else if (x < cur->value) cur->_L_child = remove_aux(cur->_L_child, x);
else if (x > cur->value) cur->_R_child = remove_aux(cur->_R_child, x);
//else,we can start to delete the cur node.
//@1 left child is null
else if (cur->_L_child == NULL){
//left child is null,so easy to do this
_HJSTL_BST_Node_<Type>* rep = cur->_R_child;
delete cur;
return rep;
}
//@2 left's right child is null
else if (cur->_L_child->_R_child == NULL){
//so easy to do this
_HJSTL_BST_Node_<Type>* rep = cur->_L_child;
rep->_R_child = cur->_R_child;
delete cur;
return rep;
}
//@3 this case is complex.please paint the case in paper and understand it
else{
//i get the largest node from cur->left,and let the node
//as the new node.
//you can also get the minimum node from cur->right,and let
//the node as the new node
//
_HJSTL_BST_Node_<Type>* rep = cur->_L_child;
//get the maximum from left child-tree
for (; rep->_R_child->_R_child!=NULL; rep = rep->_R_child);
_HJSTL_BST_Node_<Type>* res = rep->_R_child;
rep->_R_child = res->_L_child;
res->_L_child = cur->_L_child;
res->_R_child = cur->_R_child;
delete cur;
return res;
}
return cur;
}
#endif //end of _HJ_STL_BST_H_
///<2016/5/10 nankai hujian>
二叉查找树的实现(c++)
原文作者:二叉查找树
原文地址: https://blog.csdn.net/hujian_/article/details/51362079
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
原文地址: https://blog.csdn.net/hujian_/article/details/51362079
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。