排序二叉树、查找、二分法查找、数据结构,实验报告

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <time.h>
using namespace std;

typedef int ElemType ;
typedef int KeyType;

const int MAX_SIZE_ST=10;

bool cmp( ElemType a,ElemType b ) {
	return a<b;
	}

typedef struct BiTNode
{
    ElemType data;
    struct BiTNode *lchild, *rchild;
} BiTNode, *BiTree;

typedef struct
{
    ElemType *elem;
    int length;
} SSTable;

int search_seq( SSTable ST,KeyType key ) {
	int i=0; //找不到时为0
	ST.elem[0]=key;//查找哨兵
	for ( i=ST.length; ST.elem[i]!=key; --i );
	return i;
	}

SSTable creatST() {
	printf( "请输入数据的个数:" );
	int n;
	do {
		scanf( "%d",&n );
		if ( n>0&&n<MAX_SIZE_ST )
			break;
		printf( "数据不合法\n请重新输入:" );
		}
	while ( 1 );
	SSTable ST;
	ST.elem=( ElemType * )malloc( MAX_SIZE_ST*sizeof( ElemType ) );
	ST.length=n;
	printf( "请依次输入数值:\n" );
	for ( int i=1; i<=n; i++ ) {
		printf( "%d:",i );
		scanf( "%d",ST.elem+i );
		}
	printf( "顺序表建立完成!\n" );
	return ST;
	}

int binary_find( SSTable ST,KeyType key ) {
	int low,high,mid;
	low=1;
	high=ST.length;
	while ( low<high ) {
		mid=( low +high )/2;
		if ( key==ST.elem[mid] )
			return mid;
		else if ( key>ST.elem[mid] )
			low=mid+1;
		else high=mid-1;
		}
	return 0;
	}

int searchBST(BiTree T,KeyType key,BiTree f,BiTree &p)
{
    if (!T)
    {
        p=f;
        return 0;
    }
    else if (key==T->data)
    {
        p=T;
        return 1;
    }
    else if (key<T->data)
    {
     return   searchBST(T->lchild,key,T,p);
    }
    else
     return   searchBST(T->rchild,key,T,p);
}

int insertBST(BiTree  &T,ElemType e)
{
    BiTree s,p;
    if ( !searchBST(T,e,NULL,p))
    {
        s=new BiTNode();
        s->data=e;
        s->lchild=s->rchild=NULL;
        if ( !p )
            T=s;
        else if (e< p->data)
            p->lchild=s;
        else p->rchild=s;
        return 1;
    }
    else
        return 0;
}

BiTree creatBST(int n)
{
    srand(time(NULL));
    BiTree T=NULL,p;
    ElemType x;
    for ( int i=0; i<n; i++ )
    {
        x=rand()%100;
        insertBST( T,x );
    }
    return T;
}

BiTree Delete( BiTree &tptr,KeyType key ) {
	BiTree tmp,parent=NULL,p;
	p=tptr;
	while ( p ) {
		if ( p->data==key )
			break;
		parent=p;
		p=( key<p->data )?p->lchild:p->rchild;
		}
	if ( !p ) return NULL;
	tmp=p;
	if ( !p->rchild&&!p->lchild ) { /*p的左右子树都为空*/
		if ( !parent ) //要删根,须修改根指针
			tptr=NULL;
		else if ( p==parent->rchild )
			parent->rchild=NULL;
		else
			parent->lchild=NULL;
		free( p );
		}
	else if ( !p->rchild ) { //p的右子树为空,则重接p的左子树
		p=p->lchild;
		if ( !parent ) //要删根,须修改根指针
			tptr=p;
		else if ( tmp==parent->lchild )
			parent->lchild=p;
		else
			parent->rchild=p;
		free( tmp );
		}
	else if ( !p->lchild ) { //的左子树为空,则重接p的左子树
		p=p->rchild;
		if ( !parent ) //要删根,须修改根指针
			tptr=p;
		else if ( tmp==parent->lchild )
			parent->lchild=p;
		else
			parent->rchild=p;
		free( tmp );
		}
	else if ( p->rchild&&p->lchild ) { //p有左子树和右子树,用p的后继覆盖p然后删去后继
		//另有方法:用p的前驱覆盖p然后删去前驱||合并p的左右子树
		parent=p;           //由于用覆盖法删根,则不必特殊考虑删根
		p=p->rchild;
		while ( p->lchild ) {
			parent=p;
			p=p->lchild;
			}
		tmp->data=p->data;
		if ( p==parent->lchild )
			parent->lchild=NULL;
		else
			parent->rchild=NULL;
		free( p );
		}
	return tptr;
	}

void tree_display(BiTree T)
{
    BiTree temp=T;
    if(temp)
    {
        tree_display(temp->lchild);
        printf("%d ",temp->data);
        tree_display(temp->rchild);
    }
}

int main()
{
    system( "color 0B" );
    // 直接查找(未排序)
     SSTable ST=creatST();
	printf( "请输入你要查找的数值:\n" );
	int s;
	scanf( "%d",&s );
	 int i=search_seq(ST,s);
	 if(!i)printf("未找到\n");
	 else printf("找到在第%d处\n",i);
	//排序.二分法查找
	sort( ST.elem+1,ST.elem+ST.length+1,cmp );
	for ( int j=1; j<=ST.length; ++j )
		printf( "%d ",*( ST.elem+j ) );
	int j=binary_find( ST,s );
	if ( !j )printf( "未找到!\n" );
	else printf( "找到在第%d处!\n",i );
    //随机创建 二叉排序树
    printf("请输入结点的个数:");
    int n;
    scanf("%d",&n);
    BiTree T;
    T=creatBST(n);
    printf("创建完成\n");
    tree_display(T);
    return 0;
}

    原文作者:二叉查找树
    原文地址: https://blog.csdn.net/cor_twi/article/details/17270975
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞