Given a complete binary tree, count the number of nodes.
Definition of a complete binary tree from Wikipedia:
In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.
满二叉树的节点数量的求解,直接遍历必然超时,所里判断是否是满二叉子树来做。
直接深度优先遍历DFS会超时,所以可以使用公式来计算,这个利用了满二叉树的性质
代码如下:
/*class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x) { val = x; } }*/ /* * 递归搜索的话必然超时 * 所以添加一下判断 * */ public class Solution { public int countNodes(TreeNode root) { if(root==null) return 0; int leftDepth = getLeft(root); int rightDepth = getRight(root); if(leftDepth == rightDepth) return (2<<leftDepth-1) - 1; else return countNodes(root.left) + countNodes(root.right) + 1; } public int getLeft(TreeNode root) { int count = 0; while(root!=null) { root = root.left; ++count; } return count; } public int getRight(TreeNode root) { int count = 0; while(root!=null) { root = root.right; ++count; } return count; } }
下面是C++的做法,就是做一个DFS深度优先搜索找到满二叉树,然后使用公式直接计算,否则递归计算
注意位运算的计算符号的优先级是低于普通的加减乘除运算的
代码如下:
#include <iostream>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
using namespace std;
/* struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; */
class Solution
{
public:
int countNodes(TreeNode* root)
{
if (root == NULL)
return 0;
else
{
int leftDepth = getLeftDepth(root);
int rightDepth = getRightDepth(root);
if (leftDepth == rightDepth)
return (2 << (leftDepth - 1)) - 1;
else
return countNodes(root->left) + countNodes(root->right) + 1;
}
}
int getLeftDepth(TreeNode* root)
{
int count = 0;
while (root != NULL)
{
count++;
root = root->left;
}
return count;
}
int getRightDepth(TreeNode* root)
{
int count = 0;
while (root != NULL)
{
count++;
root = root->right;
}
return count;
}
};