题目:
Follow up for “Unique Paths”:
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3×3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
思路:
只需要在
http://blog.csdn.net/lanxu_yy/article/details/17509431的基础上增加一个判断条件。
代码:
方法1:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m=obstacleGrid.size();
int n = obstacleGrid[0].size();
int ** dp=new int*[m];
for(int i=0;i<m;i++)
{
dp[i] = new int[n];
}
int step = m+n-1;
int cur=1;
dp[0][0]=(obstacleGrid[0][0]==1?0:1);
while(cur<step)
{
for(int i=0;i<=cur;i++)
{
if(i>=m)
{
continue;
}
int j=cur-i;
if(j>=n)
{
continue;
}
if(obstacleGrid[i][j]==1)
{
dp[i][j]=0;
}
else
{
dp[i][j]=0;
if(i>0)
{
dp[i][j]+=dp[i-1][j];
}
if(j>0)
{
dp[i][j]+=dp[i][j-1];
}
}
}
cur++;
};
return dp[m-1][n-1];
}
};
方法2:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
if(obstacleGrid.size() == 0 || obstacleGrid[0].size() == 0){
return 0;
}
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
int** dp = new int*[m];
for(int i = 0; i < m; i++){
dp[i] = new int[n];
for(int j = 0; j < n; j++){
dp[i][j] = 0;
}
}
dp[0][0] = (obstacleGrid[0][0] == 0) ? 1 : 0;
for(int i = 1; i < m; i++){
dp[i][0] = (obstacleGrid[i][0] == 0) ? dp[i-1][0] : 0;
}
for(int i = 1; i < n; i++){
dp[0][i] = (obstacleGrid[0][i] == 0) ? dp[0][i-1] : 0;
}
for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
if(obstacleGrid[i][j] == 1){
dp[i][j] = 0;
}
}
}
return dp[m-1][n-1];
}
};