题目:
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great / \ gr eat / \ / \ g r e at / \ a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string "rgeat"
.
rgeat / \ rg eat / \ / \ r g e at / \ a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and "at"
, it produces a scrambled string"rgtae"
.
rgtae / \ rg tae / \ / \ r g ta e / \ t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
思路:
用递归可以非常简单地完成,但是递归时需要比较两种情况: 1)s1左侧与s2左侧比较,s1右侧与s2右侧比较 2)s1左侧与s2右侧比较,s1右侧与s2左侧比较
为了简化计算量,我们可以用动态规划的方法来完成。dp[l][i][j]中的l+1代表子字符串的长度,i代表s1的起始点,j代表s2的起始点。
代码:
class Solution {
public:
bool isScramble(string s1, string s2) {
if(s1.size()!=s2.size())
{
return false;
}
else
{
int len = s1.size();
bool*** dp = new bool**[len];
for(int i=0;i<len;i++)
{
dp[i]=new bool*[len];
for(int j=0;j<len;j++)
{
dp[i][j]=new bool[len];
}
}
for(int i=0;i<len;i++)
{
for(int j=0;j<len;j++)
{
dp[0][i][j]=(s1[i]==s2[j]);
}
}
for(int l=2;l<=len;l++)
{
for(int i=0;i+l<=len;i++)
{
for(int j=0;j+l<=len;j++)
{
dp[l-1][i][j] = false;
for(int k=1;k<=l-1;k++)
{
if(dp[k-1][i][j]&&dp[l-k-1][i+k][j+k])
{
dp[l-1][i][j]=true;
}
else if(dp[k-1][i][j+l-k]&&dp[l-k-1][i+k][j])
{
dp[l-1][i][j]=true;
}
}
}
}
}
return dp[len-1][0][0];
}
}
};