Tarjan算法查找强联通组件的程序

本文给出了C++程序和Python程序。

tarjan算法是由Robert Tarjan提出的求解有向图强连通分量的线性时间的算法。

程序来源:Tarjan’s Algorithm to find Strongly Connected Components

百度百科:
tarjan算法

维基百科:Tarjan’s strongly connected components algorithm。 

参考文章:Tarjan算法

C++程序:

// A C++ program to find strongly connected components in a given
// directed graph using Tarjan's algorithm (single DFS)
#include<iostream>
#include <list>
#include <stack>
#define NIL -1
using namespace std;
 
// A class that represents an directed graph
class Graph
{
    int V;    // No. of vertices
    list<int> *adj;    // A dynamic array of adjacency lists
 
    // A Recursive DFS based function used by SCC()
    void SCCUtil(int u, int disc[], int low[],
                 stack<int> *st, bool stackMember[]);
public:
    Graph(int V);   // Constructor
    void addEdge(int v, int w);   // function to add an edge to graph
    void SCC();    // prints strongly connected components
};
 
Graph::Graph(int V)
{
    this->V = V;
    adj = new list<int>[V];
}
 
void Graph::addEdge(int v, int w)
{
    adj[v].push_back(w);
}
 
// A recursive function that finds and prints strongly connected
// components using DFS traversal
// u --> The vertex to be visited next
// disc[] --> Stores discovery times of visited vertices
// low[] -- >> earliest visited vertex (the vertex with minimum
//             discovery time) that can be reached from subtree
//             rooted with current vertex
// *st -- >> To store all the connected ancestors (could be part
//           of SCC)
// stackMember[] --> bit/index array for faster check whether
//                  a node is in stack
void Graph::SCCUtil(int u, int disc[], int low[], stack<int> *st,
                    bool stackMember[])
{
    // A static variable is used for simplicity, we can avoid use
    // of static variable by passing a pointer.
    static int time = 0;
 
    // Initialize discovery time and low value
    disc[u] = low[u] = ++time;
    st->push(u);
    stackMember[u] = true;
 
    // Go through all vertices adjacent to this
    list<int>::iterator i;
    for (i = adj[u].begin(); i != adj[u].end(); ++i)
    {
        int v = *i;  // v is current adjacent of 'u'
 
        // If v is not visited yet, then recur for it
        if (disc[v] == -1)
        {
            SCCUtil(v, disc, low, st, stackMember);
 
            // Check if the subtree rooted with 'v' has a
            // connection to one of the ancestors of 'u'
            // Case 1 (per above discussion on Disc and Low value)
            low[u]  = min(low[u], low[v]);
        }
 
        // Update low value of 'u' only of 'v' is still in stack
        // (i.e. it's a back edge, not cross edge).
        // Case 2 (per above discussion on Disc and Low value)
        else if (stackMember[v] == true)
            low[u]  = min(low[u], disc[v]);
    }
 
    // head node found, pop the stack and print an SCC
    int w = 0;  // To store stack extracted vertices
    if (low[u] == disc[u])
    {
        while (st->top() != u)
        {
            w = (int) st->top();
            cout << w << " ";
            stackMember[w] = false;
            st->pop();
        }
        w = (int) st->top();
        cout << w << "\n";
        stackMember[w] = false;
        st->pop();
    }
}
 
// The function to do DFS traversal. It uses SCCUtil()
void Graph::SCC()
{
    int *disc = new int[V];
    int *low = new int[V];
    bool *stackMember = new bool[V];
    stack<int> *st = new stack<int>();
 
    // Initialize disc and low, and stackMember arrays
    for (int i = 0; i < V; i++)
    {
        disc[i] = NIL;
        low[i] = NIL;
        stackMember[i] = false;
    }
 
    // Call the recursive helper function to find strongly
    // connected components in DFS tree with vertex 'i'
    for (int i = 0; i < V; i++)
        if (disc[i] == NIL)
            SCCUtil(i, disc, low, st, stackMember);
}
 
// Driver program to test above function
int main()
{
    cout << "\nSCCs in first graph \n";
    Graph g1(5);
    g1.addEdge(1, 0);
    g1.addEdge(0, 2);
    g1.addEdge(2, 1);
    g1.addEdge(0, 3);
    g1.addEdge(3, 4);
    g1.SCC();
 
    cout << "\nSCCs in second graph \n";
    Graph g2(4);
    g2.addEdge(0, 1);
    g2.addEdge(1, 2);
    g2.addEdge(2, 3);
    g2.SCC();
 
    cout << "\nSCCs in third graph \n";
    Graph g3(7);
    g3.addEdge(0, 1);
    g3.addEdge(1, 2);
    g3.addEdge(2, 0);
    g3.addEdge(1, 3);
    g3.addEdge(1, 4);
    g3.addEdge(1, 6);
    g3.addEdge(3, 5);
    g3.addEdge(4, 5);
    g3.SCC();
 
    cout << "\nSCCs in fourth graph \n";
    Graph g4(11);
    g4.addEdge(0,1);g4.addEdge(0,3);
    g4.addEdge(1,2);g4.addEdge(1,4);
    g4.addEdge(2,0);g4.addEdge(2,6);
    g4.addEdge(3,2);
    g4.addEdge(4,5);g4.addEdge(4,6);
    g4.addEdge(5,6);g4.addEdge(5,7);g4.addEdge(5,8);g4.addEdge(5,9);
    g4.addEdge(6,4);
    g4.addEdge(7,9);
    g4.addEdge(8,9);
    g4.addEdge(9,8);
    g4.SCC();
 
    cout << "\nSCCs in fifth graph \n";
    Graph g5(5);
    g5.addEdge(0,1);
    g5.addEdge(1,2);
    g5.addEdge(2,3);
    g5.addEdge(2,4);
    g5.addEdge(3,0);
    g5.addEdge(4,2);
    g5.SCC();
 
    return 0;
}

程序运行输出:

SCCs in first graph
4
3
1 2 0

SCCs in second graph
3
2
1
0

SCCs in third graph
5
3
4
6
2 1 0

SCCs in fourth graph
8 9
7
5 4 6
3 2 1 0
10

SCCs in fifth graph
4 3 2 1 0 

Python程序:

# Python program to find strongly connected components in a given
# directed graph using Tarjan's algorithm (single DFS)
#Complexity : O(V+E)
  
from collections import defaultdict
  
#This class represents an directed graph 
# using adjacency list representation
class Graph:
  
    def __init__(self,vertices):
        #No. of vertices
        self.V= vertices 
         
        # default dictionary to store graph
        self.graph = defaultdict(list) 
         
        self.Time = 0
  
    # function to add an edge to graph
    def addEdge(self,u,v):
        self.graph[u].append(v)
         
  
    '''A recursive function that find finds and prints strongly connected
    components using DFS traversal
    u --> The vertex to be visited next
    disc[] --> Stores discovery times of visited vertices
    low[] -- >> earliest visited vertex (the vertex with minimum
                discovery time) that can be reached from subtree
                rooted with current vertex
    st -- >> To store all the connected ancestors (could be part
           of SCC)
    stackMember[] --> bit/index array for faster check whether
                  a node is in stack
    '''
    def SCCUtil(self,u, low, disc, stackMember, st):
 
        # Initialize discovery time and low value
        disc[u] = self.Time
        low[u] = self.Time
        self.Time += 1
        stackMember[u] = True
        st.append(u)
 
        # Go through all vertices adjacent to this
        for v in self.graph[u]:
             
            # If v is not visited yet, then recur for it
            if disc[v] == -1 :
             
                self.SCCUtil(v, low, disc, stackMember, st)
 
                # Check if the subtree rooted with v has a connection to
                # one of the ancestors of u
                # Case 1 (per above discussion on Disc and Low value)
                low[u] = min(low[u], low[v])
                         
            elif stackMember[v] == True: 
 
                '''Update low value of 'u' only if 'v' is still in stack
                (i.e. it's a back edge, not cross edge).
                Case 2 (per above discussion on Disc and Low value) '''
                low[u] = min(low[u], disc[v])
 
        # head node found, pop the stack and print an SCC
        w = -1 #To store stack extracted vertices
        if low[u] == disc[u]:
            while w != u:
                w = st.pop()
                print w,
                stackMember[w] = False
                 
            print""
             
     
 
    #The function to do DFS traversal. 
    # It uses recursive SCCUtil()
    def SCC(self):
  
        # Mark all the vertices as not visited 
        # and Initialize parent and visited, 
        # and ap(articulation point) arrays
        disc = [-1] * (self.V)
        low = [-1] * (self.V)
        stackMember = [False] * (self.V)
        st =[]
         
 
        # Call the recursive helper function 
        # to find articulation points
        # in DFS tree rooted with vertex 'i'
        for i in range(self.V):
            if disc[i] == -1:
                self.SCCUtil(i, low, disc, stackMember, st)
 
 
  
  
  
# Create a graph given in the above diagram
g1 = Graph(5)
g1.addEdge(1, 0)
g1.addEdge(0, 2)
g1.addEdge(2, 1)
g1.addEdge(0, 3)
g1.addEdge(3, 4)
print "SSC in first graph "
g1.SCC()
 
g2 = Graph(4)
g2.addEdge(0, 1)
g2.addEdge(1, 2)
g2.addEdge(2, 3)
print "\nSSC in second graph "
g2.SCC()
 
  
g3 = Graph(7)
g3.addEdge(0, 1)
g3.addEdge(1, 2)
g3.addEdge(2, 0)
g3.addEdge(1, 3)
g3.addEdge(1, 4)
g3.addEdge(1, 6)
g3.addEdge(3, 5)
g3.addEdge(4, 5)
print "\nSSC in third graph "
g3.SCC()
 
g4 = Graph(11)
g4.addEdge(0, 1)
g4.addEdge(0, 3)
g4.addEdge(1, 2)
g4.addEdge(1, 4)
g4.addEdge(2, 0)
g4.addEdge(2, 6)
g4.addEdge(3, 2)
g4.addEdge(4, 5)
g4.addEdge(4, 6)
g4.addEdge(5, 6)
g4.addEdge(5, 7)
g4.addEdge(5, 8)
g4.addEdge(5, 9)
g4.addEdge(6, 4)
g4.addEdge(7, 9)
g4.addEdge(8, 9)
g4.addEdge(9, 8)
print "\nSSC in fourth graph "
g4.SCC();
 
 
g5 = Graph (5)
g5.addEdge(0, 1)
g5.addEdge(1, 2)
g5.addEdge(2, 3)
g5.addEdge(2, 4)
g5.addEdge(3, 0)
g5.addEdge(4, 2)
print "\nSSC in fifth graph "
g5.SCC();
 
#This code is contributed by Neelam Yadav

 

    原文作者:查找算法
    原文地址: https://blog.csdn.net/tigerisland45/article/details/54864931
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞