一、冒泡排序
已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先比较a[1]与a[2]的值,若a[1]大于a[2]则交换两者的值,否则不变。再比较a[2]与a[3]的值,若a[2]大于a[3]则交换两者的值,否则不变。再比较a[3]与a[4],依此类推,最后比较a[n-1]与a[n]的值。这样处理一轮后,a[n]的值一定是这组数据中最大的。再对a[1]~a[n-1]以相同方法处理一轮,则a[n-1]的值一定是a[1]~a[n-1]中最大的。再对a[1]~a[n-2]以相同方法处理一轮,依此类推。共处理n-1轮后a[1]、a[2]、……a[n]就以升序排列了。
优点:稳定,比较次数已知;
缺点:慢,每次只能移动相邻两个数据,移动数据的次数多。
二、选择排序
已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先比较a[1]与a[2]的值,若a[1]大于a[2]则交换两者的值,否则不变。再比较a[1]与a[3]的值,若a[1]大于a[3]则交换两者的值,否则不变。再比较a[1]与a[4],依此类推,最后比较a[1]与a[n]的值。这样处理一轮后,a[1]的值一定是这组数据中最小的。再将a[2]与a[3]~a[n]以相同方法比较一轮,则a[2]的值一定是a[2]~a[n]中最小的。再将a[3]与a[4]~a[n]以相同方法比较一轮,依此类推。共处理n-1轮后a[1]、a[2]、……a[n]就以升序排列了。
优点:稳定,比较次数与冒泡排序一样,数据移动次数比冒泡排序少;
缺点:相对之下还是慢。
三、插入排序
已知一组升序排列数据a[1]、a[2]、……a[n],一组无序数据b[1]、b[2]、……b[m],需将二者合并成一个升序数列。首先比较b[1]与a[1]的值,若b[1]大于a[1],则跳过,比较b[1]与a[2]的值,若b[1]仍然大于a[2],则继续跳过,直到b[1]小于a数组中某一数据a[x],则将a[x]~a[n]分别向后移动一位,将b[1]插入到原来a[x]的位置这就完成了b[1]的插入。b[2]~b[m]用相同方法插入。(若无数组a,可将b[1]当作n=1的数组a)
优点:稳定,快;
缺点:比较次数不一定,比较次数越少,插入点后的数据移动越多,特别是当数据总量庞大的时候,但用链表可以解决这个问题。
四、缩小增量排序
由希尔在1959年提出,又称希尔排序。
已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。发现当n不大是,插入排序的效果很好。首先取一增量d(d<n),将a[1]、a[1+d]、a[1+2d]……列为第一组,a[2]、a[2+d]、a[2+2d]……列为第二组……,a[d]、a[2d]、a[3d]……列为最后一组依此类推,在各组内用插入排序,然后取d'<d,重复上述操作,直到d=1。
优点:快,数据移动少;
缺点:不稳定,d的取值是多少,应取多少个不同的值,都无法确切知道,只能凭经验来取。
五、快速排序
快速排序是冒泡排序的改进版,是目前已知的最快的排序方法。
已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先任取数据a[x]作为基准。比较a[x]与其它数据并排序,使a[x]排在数据的第k位,并且使a[1]~a[k-1]中的每一个数据<a[x],a[k+1]~a[n]中的每一个数据>a[x],然后采用分治的策略分别对a[1]~a[k-1]和a[k+1]~a[n]两组数据进行快速排序。
优点:极快,数据移动少;
缺点:不稳定。
经过一段时间的学习和编程,我已对上述几种排序方法熟练掌握或有所了解。在此基础上,经过我的思考和实践,我研究出了一种新的排序算法:分段插入排序。
分段插入排序
已知一组升序排列数据a[1]、a[2]、……a[n],一组无序数据b[1]、b[2]、……b[m],需将二者合并成一个升序数列。先将数组a分成x等份(x<<n),每等份有n/x个数据。将每一段的第一个数据先储存在数组c中:c[1]、c[2]、……c[x]。运用插入排序处理数组b中的数据。插入时b先与c比较,确定了b在a中的哪一段之后,再到a中相应的段中插入b。随着数据的插入,a中每一段的长度会有变化,所以在每次插入后,都要检测一下每段数据的量的标准差s,当其大于某一值时,将a重新分段。在数据量特别巨大时,可在a中的每一段中分子段,b先和主段的首数据比较,再和子段的首数据比较,可提高速度。
优点:快,比较次数少;
缺点:不适用于较少数据的排序,s的临界值无法确切获知,只能凭经验取。
我设计的算法或许优于某些算法,但它也有它的优点、缺点和适用范围。不仅排序算法如此,任何算法都一样。没有任何一个人干说自己的算法是最好的。设计新算法的过程其实就是增加其优点,减少其缺点和拓宽其适用范围的过程。我最崇尚的一句话就是:“没有最好,只有更好。”