134. Gas Station
题目
There are N gas stations along a circular route, where the amount of gas at station i is gas[i].
You have a car with an unlimited gas tank and it costs cost[i] of gas to travel from station i to its next station (i+1). You begin the journey with an empty tank at one of the gas stations.
Return the starting gas station's index if you can travel around the circuit once, otherwise return -1.
Note:
The solution is guaranteed to be unique.
解析
- 思路1:可以穷举每个位置,求和是否大于0;
- 非常经典的一道题。可以转换成求最大连续和做,但是有更简单的方法。
- 基于一个数学定理:如果一个数组的总和非负,那么一定可以找到一个起始位置,从他开始绕数组一圈,累加和一直都是非负的
- 继续对问题进行抽象,我们肯定希望一开始的路程都是加油>消耗的,这样就可以累积油量应付后面的消耗量大的,根据这个思路,就转变成求数组的最大连续子序列的和(并且记录起始下标),这是我们前面接触过的题目。
- 因为是循环数组,我们还得考虑一种情况:就是首尾都是正数,怎么办呢?
- 正因为是循环数组,还有一种类似于快排前后指针的操作。
class Solution {
public:
int canCompleteCircuit(vector<int> &gas, vector<int> &cost) {
if (gas.size()==0||cost.size()==0||gas.size()!=cost.size())
{
return -1;
}
int index = 0;
int sum_resdual = 0;
for (int j = 0; j < gas.size();j++)
{
sum_resdual += (gas[j] - cost[j]);
}
if (sum_resdual<0)
{
return -1;
}
sum_resdual = 0;
for (int i = 0; i < gas.size();i++)
{
//index = 0; //bug
sum_resdual += (gas[i] - cost[i]);
if (sum_resdual<0)
{
index = i + 1;
sum_resdual = 0;
}
}
return index;
}
};
int canCompleteCircuit(vector<int> &gas, vector<int> &cost) {
int start = 0; // 起始位置
int remain = 0; // 当前剩余燃料
int debt = 0; // 前面没能走完的路上欠的债
for (int i = 0; i < gas.size(); i++) {
remain += gas[i] - cost[i];
if (remain < 0) {
debt += remain;
start = i + 1;
remain = 0;
}
}
return remain + debt >= 0 ? start : -1; //这句话保证了求和sum<0,返回-1
}
- 从start出发, 如果油量足够, 可以一直向后走 end++; 油量不够的时候,start向后退 最终 start == end的时候,如果有解一定是当前 start所在位置
class Solution {
public: int canCompleteCircuit(vector<int> &gas, vector<int> &cost) {
int start = gas.size() - 1;
int end = 0;
int sum = gas[start] - cost[start];
while(start > end){
if(sum >= 0){
sum += gas[end] - cost[end];
++end;
}else{
--start;
sum += gas[start] - cost[start];
}
}
return sum >=0 ? start : -1;
}
};
题目来源