112. Path Sum
题目
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
For example:
Given the below binary tree and sum = 22,
5
/ \
4 8
/ / \
11 13 4
/ \ \
7 2 1
return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.
解析
class Solution_112 {
public:
bool dfs(TreeNode* root, int cur_sum, int sum)
{
if (!root)
{
return false;
}
cur_sum += root->val;
if (root->left == NULL&&root->right == NULL&&cur_sum == sum)
{
return true;
}
return dfs(root->left, cur_sum, sum) || dfs(root->right, cur_sum, sum);
}
bool hasPathSum(TreeNode *root, int sum) {
if (!root)
{
return false;
}
return dfs(root, 0, sum);
}
bool hasPathSum1(TreeNode* root, int sum) { //递归
if (root == nullptr){
return false;
}
else if (root->left == nullptr && root->right == nullptr && root->val == sum){
return true;
}
else{
return hasPathSum(root->left, sum - root->val) || hasPathSum(root->right, sum - root->val);
}
}
bool hasPathSum2(TreeNode *root, int sum) { //dfs
//用非递归的先序和后序遍历感觉都有问题,需要额外的辅助变量才行
if (!root)
{
return false;
}
stack<TreeNode*> sta;
int ret = 0;
TreeNode* p = root;
TreeNode* temp;
TreeNode* preNode;
while (p!=NULL||!sta.empty())
{
while (p!=NULL)
{
sta.push(p);
ret += p->val;
p = p->left;
if (p->left==NULL&&p->right==NULL)
{
if (ret==sum)
{
return true;
}
}
}
if (!sta.empty())
{
temp = sta.top(); //减有bug
if (temp->right&&preNode!=temp) //右孩子还未访问
{
p = p->right; //到外层while
}
else
{
preNode = p;
sta.pop();
ret -= temp->val;
}
}
}
return false;
}
bool hasPathSum3(TreeNode* root, int sum) { //bfs
if (!root)
{
return false;
}
queue<TreeNode*> que;
queue<int> sum_que;
que.push(root);
sum_que.push(root->val);
while (!que.empty())
{
TreeNode* cur = que.front();
que.pop();
int ret = sum_que.front();
sum_que.pop();
if (cur->left==NULL&&cur->right==NULL&&ret==sum)
{
return true;
}
if (cur->left)
{
que.push(cur->left);
sum_que.push(ret + cur->left->val);
}
if (cur->right)
{
que.push(cur->right);
sum_que.push(ret + cur->right->val);
}
}
return false;
}
};
题目来源