希尔排序基本思想:
先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行直接插入排序;然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有记录放在同一组中进行直接插入排序为止。
该方法实质上是一种分组插入方法。
给定实例的shell排序的排序过程
假设待排序文件有10个记录,其关键字分别是:
49,38,65,97,76,13,27,49,55,04。
增量序列的取值依次为:
5,3,1
缩小增量法
属于插入类排序,是将整个无序列分割成若干小的子序列分别进行插入排序
排序过程:先取一个正整数d1<n,把所有序号相隔d1的数组元素放一组,组内进行直接插入排序;然后取d2<d1,重复上述分组和排序操作;直至di=1,即所有记录放进一个组中排序为止
初始:d=5
49 38 65 97 76 13 27 49* 55 04
49 13
|——————-|
38 27
|——————-|
65 49*
|——————-|
97 55
|——————-|
76 04
|——————-|
一趟结果
13 27 49* 55 04 49 38 65 97 76
d=3
13 27 49* 55 04 49 38 65 97 76
13 55 38 76
|————|————|————|
27 04 65
|————|————|
49* 49 97
|————|————|
二趟结果
13 04 49* 38 27 49 55 65 97 76
d=1
13 04 49* 38 27 49 55 65 97 76
|—-|—-|—-|—-|—-|—-|—-|—-|—-|
三趟结果
04 13 27 38 49* 49 55 65 76 97
希尔排序的JAVA实现 public class Test {
public static int[] a = { 10, 32, 1, 9, 5, 7, 12, 0, 4, 3 };
public static void main(String args[]) {
int i; // 循环计数变量
int Index = a.length;// 数据索引变量
System.out.print(“排序前: “);
for (i = 0; i < Index – 1; i++)
System.out.printf(“%3s “, a[i]);
System.out.println(“”);
ShellSort(Index – 1); // 选择排序
// 排序后结果
System.out.print(“排序后: “);
for (i = 0; i < Index – 1; i++)
System.out.printf(“%3s “, a[i]);
System.out.println(“”);
}
public static void ShellSort(int Index) {
int i, j, k; // 循环计数变量
int Temp; // 暂存变量
boolean Change; // 数据是否改变
int DataLength; // 分割集合的间隔长度
int Pointer; // 进行处理的位置
DataLength = (int) Index / 2; // 初始集合间隔长度
while (DataLength != 0) // 数列仍可进行分割
{
// 对各个集合进行处理
for (j = DataLength; j < Index; j++) {
Change = false;
Temp = a[j]; // 暂存Data[j]的值,待交换值时用
Pointer = j – DataLength; // 计算进行处理的位置
// 进行集合内数值的比较与交换值
while (Temp < a[Pointer] && Pointer >= 0 && Pointer <= Index) {
a[Pointer + DataLength] = a[Pointer];
// 计算下一个欲进行处理的位置
Pointer = Pointer – DataLength;
Change = true;
if (Pointer < 0 || Pointer > Index)
break;
}
// 与最后的数值交换
a[Pointer + DataLength] = Temp;
if (Change) {
// 打印目前排序结果
System.out.print(“排序中: “);
for (k = 0; k < Index; k++)
System.out.printf(“%3s “, a[k]);
System.out.println(“”);
}
}
DataLength = DataLength / 2; // 计算下次分割的间隔长度
}
}
}