所有的进程都基于消息驱动的,进程的主线程在一个无限循环中不断的处理消息,直到进程退出,Android也是这样的实现,当Process进程启动时,framework会为当前启动的进程创建好Looper循环,Looper就在主线程的MessageQueue上不断的取消息去处理,没有消息时就进入休眠。对于下老罗的书和8.0的Android源码,Looper循环的源码基本上没有多大改变,也是因为这个模型和Binder进程间通信机制一样,已经非常成熟了。这节我们就来看一下当前进程的Looper、MessageQueue在进程启动时是如何创建出来的。
进程启动的入口函数就是ActivityThread类的main函数,后面我们会分析进程Process的启动过程,大家就会看到这一点,ActivityThread类的目录路径为frameworks\base\core\java\android\app\ActivityThread.java,它的main函数的源码如下:
public static void main(String[] args) {
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
SamplingProfilerIntegration.start();
// CloseGuard defaults to true and can be quite spammy. We
// disable it here, but selectively enable it later (via
// StrictMode) on debug builds, but using DropBox, not logs.
CloseGuard.setEnabled(false);
Environment.initForCurrentUser();
// Set the reporter for event logging in libcore
EventLogger.setReporter(new EventLoggingReporter());
// Make sure TrustedCertificateStore looks in the right place for CA certificates
final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
TrustedCertificateStore.setDefaultUserDirectory(configDir);
Process.setArgV0("<pre-initialized>");
Looper.prepareMainLooper();
ActivityThread thread = new ActivityThread();
thread.attach(false);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
// End of event ActivityThreadMain.
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
该方法中最重要的就是Looper.prepareMainLooper()、Looper.loop()这两句逻辑了。第一名是为我们当前的主线程准备Looper循环,是直接调用Looper类的静态函数来完成的;第二句就是开始循环,不断的从刚才创建好的消息队列MessageQueue中取消息进行处理。我们先来看第一句的实现,完成后再回头来分析第二句。Looper类的目录路径为frameworks\base\core\java\android\os\Looper.java,它的静态成员函数prepareMainLooper的源码如下:
/**
* Initialize the current thread as a looper, marking it as an
* application's main looper. The main looper for your application
* is created by the Android environment, so you should never need
* to call this function yourself. See also: {@link #prepare()}
*/
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
先调用prepare来进行主要成员变量的初始化,传入boolean类型的参数false最终会传到MessageQueue的构造函数中,意思是指当前的消息队列是否允许退出,因为我们当前创建的消息队列是进程的主线程的消息队列,所以是不允许主动退出的。初始化完成后,接着调用myLooper方法将返回值赋值给成员变量sMainLooper,它也是一个Looper类型的成员变量,从synchronized同步代码块中的判断就可以看出,如果sMainLooper不为空,则会抛出非法的状态异常,就是说prepareMainLooper方法只允许调用一次。好,我们接着再来看一下prepare方法的实现,源码如下:
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
sThreadLocal是Looper类的类型为ThreadLocal<Looper>的成员变量,它是线程单例的,该方法中的if判断也可以看出,该方法也只能调用一次,当进程刚启动的时候,sThreadLocal.get()方法的返回值为空,于是执行Looper类的构造方法创建Looper对象,并赋值给sThreadLocal的范型。Looper类的构造方法源码如下:
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
这里就是调用MessageQueue的构造方法创建一个MessageQueue队列,然后赋值给成员变量mQueue,接着给成员变量mThread赋值,因为Looper和MessageQueue对象都是和线程对应的,我们肯定要知道当前的Looper和MessageQueue对象属于哪条线程,就是通过成员变量mThread来判断的。我们继续分析MessageQueue的构造方法。MessageQueue类的目录路径为frameworks\base\core\java\android\os\MessageQueue.java,它的构造方法的源码如下:
MessageQueue(boolean quitAllowed) {
mQuitAllowed = quitAllowed;
mPtr = nativeInit();
}
这里主要就是执行nativeInit来进行初始化,nativeInit方法的实现在android_os_MessageQueue.cpp文件中,目录路径为frameworks\base\core\jni\android_os_MessageQueue.cpp,JNI中的实现是android_os_MessageQueue_nativeInit方法,源码如下:
static jlong android_os_MessageQueue_nativeInit(JNIEnv* env, jclass clazz) {
NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue();
if (!nativeMessageQueue) {
jniThrowRuntimeException(env, "Unable to allocate native queue");
return 0;
}
nativeMessageQueue->incStrong(env);
return reinterpret_cast<jlong>(nativeMessageQueue);
}
这里主要就是创建一个native层的NativeMessageQueue,如果创建失败,则抛出异常,否则将native层nativeMessageQueue对象的指针地址返回给java层。我们接着来看一下NativeMessageQueue类的构造方法。NativeMessageQueue类的构造方法的实现也是在android_os_MessageQueue.cpp文件中,源码如下:
NativeMessageQueue::NativeMessageQueue() :
mPollEnv(NULL), mPollObj(NULL), mExceptionObj(NULL) {
mLooper = Looper::getForThread();
if (mLooper == NULL) {
mLooper = new Looper(false);
Looper::setForThread(mLooper);
}
}
这里就直接调用Looper::getForThread()获取native层的Looper,如果为空,则调用native层的Looper构造函数创建,然后赋值给native层的Looper。我们接着来看一下native层的Looper类的构造函数,它的实现在Looper.cpp文件中,目录路径为system\core\libutils\Looper.cpp,构造方法的源码如下:
Looper::Looper(bool allowNonCallbacks) :
mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),
mPolling(false), mEpollFd(-1), mEpollRebuildRequired(false),
mNextRequestSeq(0), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {
mWakeEventFd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
LOG_ALWAYS_FATAL_IF(mWakeEventFd < 0, "Could not make wake event fd: %s",
strerror(errno));
AutoMutex _l(mLock);
rebuildEpollLocked();
}
该方法中首先调用eventfd系统函数,该函数返回一个文件描述符,与打开的其他文件一样,可以进行读写操作。然后调用rebuildEpollLocked函数继续进行后续的初始化,该函数的源码如下:
void Looper::rebuildEpollLocked() {
// Close old epoll instance if we have one.
if (mEpollFd >= 0) {
#if DEBUG_CALLBACKS
ALOGD("%p ~ rebuildEpollLocked - rebuilding epoll set", this);
#endif
close(mEpollFd);
}
// Allocate the new epoll instance and register the wake pipe.
mEpollFd = epoll_create(EPOLL_SIZE_HINT);
LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));
struct epoll_event eventItem;
memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union
eventItem.events = EPOLLIN;
eventItem.data.fd = mWakeEventFd;
int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake event fd to epoll instance: %s",
strerror(errno));
for (size_t i = 0; i < mRequests.size(); i++) {
const Request& request = mRequests.valueAt(i);
struct epoll_event eventItem;
request.initEventItem(&eventItem);
int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, request.fd, & eventItem);
if (epollResult < 0) {
ALOGE("Error adding epoll events for fd %d while rebuilding epoll set: %s",
request.fd, strerror(errno));
}
}
}
从该方法的名字也比较容易理解,就是为我们的主线程创建Epoll循环的结构体。如果成员变量mEpollFd的值大于等于0,则说明之前已创建过,所以需要先关闭。Linux中的epoll机制的实现基本上是分三步,网上的说明也很多,大家如果想详细了解的话,可以去查。首先调用epoll_create系统函数,该方法的返回值是一个文件描述符,然后初始化一个类型为epoll_event为局部变量eventItem,接着调用epoll_ctl,传入的第二个参数为EPOLL_CTL_ADD,表示我们当前要添加节点,最后的for循环将成员变量mRequests中的元素也一一添加进去。由于对Linux的epoll机制完全不懂,所以这里的逻辑也不是很明白。该方法执行完,我们的epoll节点添加进去之后,那么初始化的工作就结束了。framework中为我们创建好的java层的Looper、MessageQueue和native层的Looper、NativeMessageQueue都已经准备好了,epoll机制相应的节点也注册好了。
下面我们接着来看一下ActivityThread类的main方法中的Looper.loop()的实现。Looper类的loop方法的源码如下:
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
final long traceTag = me.mTraceTag;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
final long end;
try {
msg.target.dispatchMessage(msg);
end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (slowDispatchThresholdMs > 0) {
final long time = end - start;
if (time > slowDispatchThresholdMs) {
Slog.w(TAG, "Dispatch took " + time + "ms on "
+ Thread.currentThread().getName() + ", h=" +
msg.target + " cb=" + msg.callback + " msg=" + msg.what);
}
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
先调用myLooper方法来判断前面的准备工作是否完成,如果准备工作都出错,那就直接运行时异常。接着一个for (;;) 无限循环就去取消息了。queue.next()就是取下一个消息,后面的注释也非常清楚,该方法可能会阻塞,如果取到的msg为空,则说明消息循环要退出了,则直接return。取到下一个消息msg之后,就调用msg.target.dispatchMessage(msg)将它分发给目标进行处理,msg的成员变量target的类型为Handler,它是在我们往当前的MessageQueue消息队列上发送消息时指定的,后面我们分析Message的发送过程时就会看到,分发完成后调用sg.recycleUnchecked()来将当前的msg回收掉。Message对象的构建也是使用了一个缓存池,跟我们之前分析Binder进程间通信机制中的Parcel一样,因为消息循环是非常频繁的,所以使用缓存池可以有效的减少无用内存的分配,非常必要。接下来我们就重点看一下queue.next()是如何取到下一条消息的,该方法的实现在MessageQueue类中,目录路径为frameworks\base\core\java\android\os\MessageQueue.java,next方法的源码如下:
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
首先还是参数校验,如果成员变量mPtr为0,那么就说明native层的MessageQueue对象初始化失败了,直接返回null,下面又是一个for (;;) 无限循环。所有发送过来的消息最终都会挂载在成员变量mMessages上,它的类型为Message,Message类又有一个类型为Message的成员变量next,相当于Message类就是单向链表,所以我们发送过来的消息会不断的往上挂载,从mMessages上取下一个消息msg,如果不为空且当前的时间小于该目标msg要求的处理时间(now < msg.when),则说明时间未到,那么就需要休眠,休眠的时间长短就是nextPollTimeoutMillis了;否则就说明时间到了,需要立即处理该消息,则将该消息返回给Looper类的loop方法中进行处理。如果取到的msg为空,那么再检查一下是否有一些IdleHandler需要处理,所有的IdleHandler都是保存在成员变量mIdleHandlers当中的,这也是为了高效的利用线程的时间片。这里需要说明一下keep = idler.queueIdle()这句逻辑,它的返回keep的意思就是说是否要保留,如果返回false,那么接下来就会将该IdleHandler从mIdleHandlers当中移除,那么下次再循环时,就不会再调用该IdleHandler的queueIdle方法了。
下面我们来看看当取到的msg的要求处理时间未到时,当前线程是如何休眠的,休眠时间已经计算好了,就是nextPollTimeoutMillis,该场景下肯定是大于0的,那么就调用nativePollOnce来进行处理,该方法的源码如下:
static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jobject obj,
jlong ptr, jint timeoutMillis) {
NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
nativeMessageQueue->pollOnce(env, obj, timeoutMillis);
}
取到我们在native层创建好的NativeMessageQueue,然后调用它的pollOnce继续处理,pollOnce方法的源码如下:
void NativeMessageQueue::pollOnce(JNIEnv* env, jobject pollObj, int timeoutMillis) {
mPollEnv = env;
mPollObj = pollObj;
mLooper->pollOnce(timeoutMillis);
mPollObj = NULL;
mPollEnv = NULL;
if (mExceptionObj) {
env->Throw(mExceptionObj);
env->DeleteLocalRef(mExceptionObj);
mExceptionObj = NULL;
}
}
这里主要还是调用native层的Looper类的pollOnce继续处理,源码如下:
int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
int result = 0;
for (;;) {
while (mResponseIndex < mResponses.size()) {
const Response& response = mResponses.itemAt(mResponseIndex++);
int ident = response.request.ident;
if (ident >= 0) {
int fd = response.request.fd;
int events = response.events;
void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - returning signalled identifier %d: "
"fd=%d, events=0x%x, data=%p",
this, ident, fd, events, data);
#endif
if (outFd != NULL) *outFd = fd;
if (outEvents != NULL) *outEvents = events;
if (outData != NULL) *outData = data;
return ident;
}
}
if (result != 0) {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - returning result %d", this, result);
#endif
if (outFd != NULL) *outFd = 0;
if (outEvents != NULL) *outEvents = 0;
if (outData != NULL) *outData = NULL;
return result;
}
result = pollInner(timeoutMillis);
}
}
这里主要还是调用pollInner进一步处理,pollInner方法的源码如下:
int Looper::pollInner(int timeoutMillis) {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - waiting: timeoutMillis=%d", this, timeoutMillis);
#endif
// Adjust the timeout based on when the next message is due.
if (timeoutMillis != 0 && mNextMessageUptime != LLONG_MAX) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
int messageTimeoutMillis = toMillisecondTimeoutDelay(now, mNextMessageUptime);
if (messageTimeoutMillis >= 0
&& (timeoutMillis < 0 || messageTimeoutMillis < timeoutMillis)) {
timeoutMillis = messageTimeoutMillis;
}
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - next message in %" PRId64 "ns, adjusted timeout: timeoutMillis=%d",
this, mNextMessageUptime - now, timeoutMillis);
#endif
}
// Poll.
int result = POLL_WAKE;
mResponses.clear();
mResponseIndex = 0;
// We are about to idle.
mPolling = true;
struct epoll_event eventItems[EPOLL_MAX_EVENTS];
int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
// No longer idling.
mPolling = false;
// Acquire lock.
mLock.lock();
// Rebuild epoll set if needed.
if (mEpollRebuildRequired) {
mEpollRebuildRequired = false;
rebuildEpollLocked();
goto Done;
}
// Check for poll error.
if (eventCount < 0) {
if (errno == EINTR) {
goto Done;
}
ALOGW("Poll failed with an unexpected error: %s", strerror(errno));
result = POLL_ERROR;
goto Done;
}
// Check for poll timeout.
if (eventCount == 0) {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - timeout", this);
#endif
result = POLL_TIMEOUT;
goto Done;
}
// Handle all events.
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - handling events from %d fds", this, eventCount);
#endif
for (int i = 0; i < eventCount; i++) {
int fd = eventItems[i].data.fd;
uint32_t epollEvents = eventItems[i].events;
if (fd == mWakeEventFd) {
if (epollEvents & EPOLLIN) {
awoken();
} else {
ALOGW("Ignoring unexpected epoll events 0x%x on wake event fd.", epollEvents);
}
} else {
ssize_t requestIndex = mRequests.indexOfKey(fd);
if (requestIndex >= 0) {
int events = 0;
if (epollEvents & EPOLLIN) events |= EVENT_INPUT;
if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT;
if (epollEvents & EPOLLERR) events |= EVENT_ERROR;
if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP;
pushResponse(events, mRequests.valueAt(requestIndex));
} else {
ALOGW("Ignoring unexpected epoll events 0x%x on fd %d that is "
"no longer registered.", epollEvents, fd);
}
}
}
Done: ;
// Invoke pending message callbacks.
mNextMessageUptime = LLONG_MAX;
while (mMessageEnvelopes.size() != 0) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);
if (messageEnvelope.uptime <= now) {
// Remove the envelope from the list.
// We keep a strong reference to the handler until the call to handleMessage
// finishes. Then we drop it so that the handler can be deleted *before*
// we reacquire our lock.
{ // obtain handler
sp<MessageHandler> handler = messageEnvelope.handler;
Message message = messageEnvelope.message;
mMessageEnvelopes.removeAt(0);
mSendingMessage = true;
mLock.unlock();
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
ALOGD("%p ~ pollOnce - sending message: handler=%p, what=%d",
this, handler.get(), message.what);
#endif
handler->handleMessage(message);
} // release handler
mLock.lock();
mSendingMessage = false;
result = POLL_CALLBACK;
} else {
// The last message left at the head of the queue determines the next wakeup time.
mNextMessageUptime = messageEnvelope.uptime;
break;
}
}
// Release lock.
mLock.unlock();
// Invoke all response callbacks.
for (size_t i = 0; i < mResponses.size(); i++) {
Response& response = mResponses.editItemAt(i);
if (response.request.ident == POLL_CALLBACK) {
int fd = response.request.fd;
int events = response.events;
void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
ALOGD("%p ~ pollOnce - invoking fd event callback %p: fd=%d, events=0x%x, data=%p",
this, response.request.callback.get(), fd, events, data);
#endif
// Invoke the callback. Note that the file descriptor may be closed by
// the callback (and potentially even reused) before the function returns so
// we need to be a little careful when removing the file descriptor afterwards.
int callbackResult = response.request.callback->handleEvent(fd, events, data);
if (callbackResult == 0) {
removeFd(fd, response.request.seq);
}
// Clear the callback reference in the response structure promptly because we
// will not clear the response vector itself until the next poll.
response.request.callback.clear();
result = POLL_CALLBACK;
}
}
return result;
}
该方法的参数timeoutMillis就是我们下一个消息的等待时间了,那么在调用epoll_wait系统函数时,就会将我们当前的线程休眠了。休眠时间到了之后,epoll_wait就会返回,那我们再次检查消息队列时,就会有符合要求的消息了。
好,Looper、MessageQueue消息队列的创建过程我们就分析到这里,下节我们再继续分析Message消息的发送和处理过程。