python综合学习四之Numpy和Pandas(下)

这一节继续学习Numpy和Pandas。

一、numpy基础运算二

通过上一节的学习,我们可以了解到一部分矩阵中元素的计算和查找操作。然而在日常使用中,对应元素的索引也是非常重要的。依然,让我们先从一个脚本开始 :

# -*- coding:utf-8 -*-

"""
@author: Corwien
@file: np_yunsuan.py
@time: 18/8/26 23:37
"""

import numpy as np
A = np.arange(2, 14).reshape(3, 4)
# array([[ 2, 3, 4, 5]
#        [ 6, 7, 8, 9]
#        [10,11,12,13]])
         
print(np.argmin(A))    # 0
print(np.argmax(A))    # 11

常用方法

其中的 argmin()argmax() 两个函数分别对应着求矩阵中最小元素和最大元素的索引。相应的,在矩阵的12个元素中,最小值即2,对应索引0,最大值为13,对应索引为11。

如果需要计算统计中的均值,可以利用下面的方式,将整个矩阵的均值求出来:

print(np.mean(A))        # 7.5
print(np.average(A))     # 7.5

仿照着前一节中dot() 的使用法则,mean()函数还有另外一种写法:

print(A.mean())          # 7.5

同样的,我们可以写出求解中位数的函数:

print(A.median())       # 7.5

另外,和matlab中的cumsum()累加函数类似,Numpy中也具有cumsum()函数,其用法如下:

print(np.cumsum(A)) 

# [2 5 9 14 20 27 35 44 54 65 77 90]

在cumsum()函数中:生成的每一项矩阵元素均是从原矩阵首项累加到对应项的元素之和。比如元素9,在cumsum()生成的矩阵中序号为3,即原矩阵中2,3,4三个元素的和。

下面我们介绍一下nonzero()函数:

print(np.nonzero(A))    

# (array([0,0,0,0,1,1,1,1,2,2,2,2]),array([0,1,2,3,0,1,2,3,0,1,2,3]))

这个函数将所有非零元素的行与列坐标分割开,重构成两个分别关于行和列的矩阵。

索引

一维索引

在元素列表或者数组中,我们可以用如同a[2]一样的表示方法,同样的,在Numpy中也有相对应的表示方法:

# -*- coding:utf-8 -*-

"""
@author: Corwien
@file: np_index.py
@time: 18/8/28 00:49
"""

import numpy as np
A = np.arange(3, 11)

print(A)    # [3 4 5 6 7 8 9 10]
print(A[3]) # 6

让我们将矩阵转换为二维的,此时进行同样的操作:

A = np.arange(3, 11).reshape(2, 4)

"""
[[ 3  4  5  6]
 [ 7  8  9 10]]
"""

print(A[1]) # [ 7  8  9 10]

实际上这时的A[1]对应的就是矩阵A中第二行(从0开始算第一行)的所有元素。

二维索引

如果你想要表示具体的单个元素,可以仿照上述的例子:

print(A[1][1])      # 8

此时对应的元素即A[1][1],在A中即横纵坐标都为1,第二行第二列的元素,即8(因为计数从0开始)。同样的还有其他的表示方法:

print(A[1, 1])      # 8

在Python的 list 中,我们可以利用:对一定范围内的元素进行切片操作,在Numpy中我们依然可以给出相应的方法:

print(A[1, 1:3])    # [8 9]

这一表示形式即针对第二行中第2到第4列元素进行切片输出(不包含第4列)。

此时我们适当的利用for函数进行打印:

for row in A:
    print(row)
    
"""    
[ 3,  4,  5, 6]
[ 7,  8,  9, 10]
"""

此时它会逐行进行打印操作。如果想进行逐列打印,就需要稍稍变化一下:

for column in A.T:
    print(column)
"""  
[3 7]
[4 8]
[5 9]
[ 6 10]
"""

上述表示方法即对A进行转置,再将得到的矩阵逐行输出即可得到原矩阵的逐列输出。

最后依然说一些关于迭代输出的问题:

import numpy as np
A = np.arange(3,15).reshape((3,4))
         
print(A.flatten())   
# array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])

for item in A.flat:
    print(item)
    
# 3
# 4
……
# 14

这一脚本中的flatten是一个展开性质的函数,将多维的矩阵进行展开成1行的数列。而flat是一个迭代器,本身是一个object属性。

合并

  • np.vstack() # vertical stack 上下合并
  • np.hstack() # horizontal stack 左右合并
  • np.newaxis() # 中转置操作
  • np.concatenate() # 多个合并

分割

创建数据

# -*- coding:utf-8 -*-

"""
@author: Corwien
@file: np_split.py
@time: 18/8/28 01:21
"""

import numpy as np

A = np.arange(12).reshape((3, 4))
print(A)
"""
array([[ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11]])
"""
   

纵向分割

print(np.split(A, 2, axis=1))
"""
[array([[0, 1],
        [4, 5],
        [8, 9]]), array([[ 2,  3],
        [ 6,  7],
        [10, 11]])]
"""

横向分割

print(np.split(A, 3, axis=0))

# [array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8,  9, 10, 11]])]

错误的分割

范例的Array只有4列,只能等量对分,因此输入以上程序代码后Python就会报错。

print(np.split(A, 3, axis=1))

# ValueError: array split does not result in an equal division

为了解决这种情况, 我们会有下面这种方式.

不等量的分割

在机器学习时经常会需要将数据做不等量的分割,因此解决办法为np.array_split()

print(np.array_split(A, 3, axis=1))
"""
[array([[0, 1],
        [4, 5],
        [8, 9]]), array([[ 2],
        [ 6],
        [10]]), array([[ 3],
        [ 7],
        [11]])]
"""

成功将Array不等量分割!

其他的分割方式

在numpy里还有np.vsplit()与横np.hsplit()方式可用。

print(np.vsplit(A, 3)) #等于 print(np.split(A, 3, axis=0))

# [array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8,  9, 10, 11]])]


print(np.hsplit(A, 2)) #等于 print(np.split(A, 2, axis=1))
"""
[array([[0, 1],
       [4, 5],
       [8, 9]]), array([[ 2,  3],
        [ 6,  7],
        [10, 11]])]
"""

copy & deep copy

= 的赋值方式会带有关联性

import numpy as np

a = np.arange(4)
# array([0, 1, 2, 3])

b = a
c = a
d = b

改变a的第一个值,bcd的第一个值也会同时改变。

a[0] = 11
print(a)
# array([11,  1,  2,  3])

确认b、c、d是否与a相同。

b is a  # True
c is a  # True
d is a  # True

同样更改d的值,abc也会改变。

d[1:3] = [22, 33]   # array([11, 22, 33,  3])
print(a)            # array([11, 22, 33,  3])
print(b)            # array([11, 22, 33,  3])
print(c)            # array([11, 22, 33,  3])

copy() 的赋值方式没有关联性

deep copy 为深赋值,重新建了一个地址

b = a.copy()    # deep copy
print(b)        # array([11, 22, 33,  3])
a[3] = 44
print(a)        # array([11, 22, 33, 44])
print(b)        # array([11, 22, 33,  3])

此时ab已经没有关联。

二、pandas基础

1、Numpy和Pandas有什么不同

如果用 python 的列表和字典来作比较, 那么可以说 Numpy 是列表形式的,没有数值标签,而 Pandas 就是字典形式。Pandas是基于Numpy构建的,让Numpy为中心的应用变得更加简单。

要使用pandas,首先需要了解他主要两个数据结构:SeriesDataFrame

Series

# -*- coding:utf-8 -*-

"""
@author: Corwien
@file: pd_new.py
@time: 18/8/30 00:22
"""

import pandas as pd
import numpy as np

s = pd.Series([1, 3, 6, np.nan, 44, 1])

print s

结果打印:

/Users/corwien/anaconda2/bin/python /Users/corwien/Code/python/baseLearn/pandas/pd_new.py

0     1.0
1     3.0
2     6.0
3     NaN
4    44.0
5     1.0
dtype: float64

Series的字符串表现形式为:索引在左边,值在右边。由于我们没有为数据指定索引。于是会自动创建一个0到N-1(N为长度)的整数型索引。

DataFrame

dates = pd.date_range('20180830', periods=6)
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=['A', 'B', 'C', 'D'])

print(df)
"""
                   A         B         C         D
2018-08-30 -0.838769 -0.366117 -0.501002 -0.418720
2018-08-31  0.062155  1.467156  1.995968 -0.460316
2018-09-01  0.553028  0.144778  1.944617  1.709808
2018-09-02 -0.116423 -1.134185  1.231541  0.862480
2018-09-03 -0.823016  0.491625 -1.448212 -0.921488
2018-09-04 -0.226200  0.353459  0.219459  0.635181
"""

DataFrame是一个表格型的数据结构,它包含有一组有序的列,每列可以是不同的值类型(数值,字符串,布尔值等)。DataFrame既有行索引也有列索引, 它可以被看做由Series组成的大字典。

我们可以根据每一个不同的索引来挑选数据, 比如挑选 B 的元素:

DataFrame 的一些简单运用

print(df['b'])

"""
2018-08-30    0.391123
2018-08-31   -0.508613
2018-09-01    1.618023
2018-09-02   -1.168342
2018-09-03   -0.915434
2018-09-04    0.595129
Freq: D, Name: B, dtype: float64
"""

我们在创建一组没有给定行标签和列标签的数据 df1:

df1 = pd.DataFrame(np.arange(12).reshape((3,4)))
print(df1)

"""
   0  1   2   3
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11
"""

这样,他就会采取默认的从0开始 index. 还有一种生成 df 的方法, 如下 df2:

df2 = pd.DataFrame({'A' : 1.,
                    'B' : pd.Timestamp('20130102'),
                    'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
                    'D' : np.array([3] * 4,dtype='int32'),
                    'E' : pd.Categorical(["test","train","test","train"]),
                    'F' : 'foo'})
                    
print(df2)

"""
     A          B    C  D      E    F
0  1.0 2013-01-02  1.0  3   test  foo
1  1.0 2013-01-02  1.0  3  train  foo
2  1.0 2013-01-02  1.0  3   test  foo
3  1.0 2013-01-02  1.0  3  train  foo
"""

这种方法能对每一列的数据进行特殊对待. 如果想要查看数据中的类型, 我们可以用 dtype 这个属性:

print(df2.dtypes)

"""
df2.dtypes
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object
"""

同样, 每种数据的名称也能看到:

print(df2.columns)
# Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')

想知道数据的总结, 可以用 describe():

df2.describe()

"""
         A    C    D
count  4.0  4.0  4.0
mean   1.0  1.0  3.0
std    0.0  0.0  0.0
min    1.0  1.0  3.0
25%    1.0  1.0  3.0
50%    1.0  1.0  3.0
75%    1.0  1.0  3.0
max    1.0  1.0  3.0
"""
    原文作者:Corwien
    原文地址: https://segmentfault.com/a/1190000016171086
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞