Android Zygote进程源码分析

一  app_process64

Zygote所对应的可执行文件是/system/bin/app_process64 Zygote的代码路径frameworks/base/cmds/app_process

1.0  app_process64 init.rc中import /init.${ro.zygote}.rc,而ro.zygote=zygote64_32 init.zygote64_32 .rc的内容如下
service zygote /system/bin/app_process64 -Xzygote /system/bin –zygote –start-system-server –socket-name=zygote
    class main
    socket zygote stream 660 root system  // 套接字 名称 类型 权限 用户 组
    onrestart write /sys/android_power/request_state wake
    onrestart write /sys/power/state on
    onrestart restart media
    onrestart restart netd
    writepid /dev/cpuset/foreground/tasks /sys/fs/cgroup/stune/foreground/tasks


service zygote_secondary /system/bin/app_process32 -Xzygote /system/bin –zygote –socket-name=zygote_secondary
    class main
    socket zygote_secondary stream 660 root system
    onrestart restart zygote
    writepid /dev/cpuset/foreground/tasks /sys/fs/cgroup/stune/foreground/tasks

64位系统为了兼容32位应用程序,将同时启动zygote64和zygote,下面以zygote64为例分析。

1.1 app_process64的main函数 app_process64的入口函数是:app_main.cpp的main函数 参数是: -Xzygote /system/bin –zygote –start-system-server –socket-name=zygote
int main(int argc, char* const argv[])
{
    if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) { // 用来防止动态改变进程的权限
        // Older kernels don’t understand PR_SET_NO_NEW_PRIVS and return
        // EINVAL. Don’t die on such kernels.
        if (errno != EINVAL) {
            LOG_ALWAYS_FATAL(“PR_SET_NO_NEW_PRIVS failed: %s”, strerror(errno));
            return 12;
        }
    }


    AppRuntime runtime(argv[0], computeArgBlockSize(argc, argv)); // 创建AppRuntime,android运行时环境
    // Process command line arguments
    // ignore argv[0]
    argc–; // argv[0]等程序名称,不需要解析,因此跳过
    argv++;


    // Everything up to ‘–‘ or first non ‘-‘ arg goes to the vm.
    //
    // The first argument after the VM args is the “parent dir”, which
    // is currently unused.
    //
    // After the parent dir, we expect one or more the following internal
    // arguments :
    //
    // –zygote : Start in zygote mode
    // –start-system-server : Start the system server.
    // –application : Start in application (stand alone, non zygote) mode.
    // –nice-name : The nice name for this process.
    //
    // For non zygote starts, these arguments will be followed by
    // the main class name. All remaining arguments are passed to
    // the main method of this class.
    //
    // For zygote starts, all remaining arguments are passed to the zygote.
    // main function.
    //
    // Note that we must copy argument string values since we will rewrite the
    // entire argument block when we apply the nice name to argv0.


    int i;
    for (i = 0; i < argc; i++) {
        if (argv[i][0] != ‘-‘) { // i=1时,argv[1]=/system/bin // 跳出for循环
            break;
        }
        if (argv[i][1] == ‘-‘ && argv[i][2] == 0) {
            ++i; // Skip –.
            break;
        }
        runtime.addOption(strdup(argv[i])); // 当i=0时,将-Xzygote加入到runtime的mOptions中
    }


    // Parse runtime arguments.  Stop at first unrecognized option.
    bool zygote = false;
    bool startSystemServer = false;
    bool application = false;
    String8 niceName;
    String8 className;


    ++i;  // Skip unused “parent dir” argument. // 执行++i后i=2
    while (i < argc) { // 解析启动参数 // /init.${ro.zygote}.rc文件中为zygote进程设置的启动参数是-Xzygote /system/bin –zygote –start-system-server –socket-name=zygote
        const char* arg = argv[i++];
        if (strcmp(arg, “–zygote”) == 0) {
            zygote = true;
            niceName = ZYGOTE_NICE_NAME; // 对于64位系统nice_name为zygote64
        } else if (strcmp(arg, “–start-system-server”) == 0) {
            startSystemServer = true;
        } else if (strcmp(arg, “–application”) == 0) {
            application = true;
        } else if (strncmp(arg, “–nice-name=”, 12) == 0) {
            niceName.setTo(arg + 12);
        } else if (strncmp(arg, “–“, 2) != 0) {
            className.setTo(arg);
            break;
        } else {
            –i;
            break;
        }
    }


    // 从while循环出来后,i等于4,zygote为true,niceName为zygote64,startSystemServer为true,application为false,className为null

    Vector<String8> args;
    if (!className.isEmpty()) { // 普通应用程序
        // We’re not in zygote mode, the only argument we need to pass
        // to RuntimeInit is the application argument.
        //
        // The Remainder of args get passed to startup class main(). Make
        // copies of them before we overwrite them with the process name.
        args.add(application ? String8(“application”) : String8(“tool”));
        runtime.setClassNameAndArgs(className, argc – i, argv + i);
    } else { // Zygote
        // We’re in zygote mode.
        maybeCreateDalvikCache(); // 创建/data/dalvik-cache


        if (startSystemServer) {
            args.add(String8(“start-system-server”)); // 将start-system-server添加到args中
        }


        char prop[PROP_VALUE_MAX];
        if (property_get(ABI_LIST_PROPERTY, prop, NULL) == 0) { // ro.product.cpu.abilist64=arm64-v8a
            LOG_ALWAYS_FATAL(“app_process: Unable to determine ABI list from property %s.”,
                ABI_LIST_PROPERTY);
            return 11;
        }


        String8 abiFlag(“–abi-list=”);
        abiFlag.append(prop); // –abi-list=arm64-v8a
        args.add(abiFlag); // 将–abi-list=arm64-v8a添加到args中


        // In zygote mode, pass all remaining arguments to the zygote
        // main() method.
        for (; i < argc; ++i) {
            args.add(String8(argv[i])); // 将–socket-name=zygote添加到args中
        }
    }


    if (!niceName.isEmpty()) { // 修改程序名称
        runtime.setArgv0(niceName.string());
        set_process_name(niceName.string()); // 对Zygote而言就是将程序名称app_process64改为zygote64
    }


    // 调用AppRuntime的start方法

    if (zygote) { // zygote
        InitializeNativeLoader(); // system/core/libnativeloader/native_loader.cpp
        runtime.start(“com.android.internal.os.ZygoteInit”, args, zygote); // 调用AndroidRuntime的start()方法
    } else if (className) { // 普通应用程序
        runtime.start(“com.android.internal.os.RuntimeInit”, args, zygote);
    } else {
        fprintf(stderr, “Error: no class name or –zygote supplied.\n”);
        app_usage();
        LOG_ALWAYS_FATAL(“app_process: no class name or –zygote supplied.”);
        return 10;
    }
}

app_process64的main函数比较简单,注释也比较详细。

1.2 maybeCreateDalvikCache

static void maybeCreateDalvikCache() { #if defined(__aarch64__)     static const char kInstructionSet[] = “arm64”; // 指令集arm64 #elif defined(__x86_64__)     static const char kInstructionSet[] = “x86_64”; #elif defined(__arm__)     static const char kInstructionSet[] = “arm”; #elif defined(__i386__)     static const char kInstructionSet[] = “x86”; #elif defined (__mips__) && !defined(__LP64__)     static const char kInstructionSet[] = “mips”; #elif defined (__mips__) && defined(__LP64__)     static const char kInstructionSet[] = “mips64”; #else #error “Unknown instruction set” #endif     const char* androidRoot = getenv(“ANDROID_DATA”); // ANDROID_DATA=/data     LOG_ALWAYS_FATAL_IF(androidRoot == NULL, “ANDROID_DATA environment variable unset”);

    char dalvikCacheDir[PATH_MAX];     const int numChars = snprintf(dalvikCacheDir, PATH_MAX,             “%s/dalvik-cache/%s”, androidRoot, kInstructionSet); //  dalvikCacheDir=/data/dalvik-cache/arm64     LOG_ALWAYS_FATAL_IF((numChars >= PATH_MAX || numChars < 0),             “Error constructing dalvik cache : %s”, strerror(errno));

    int result = mkdir(dalvikCacheDir, 0711); // 创建虚拟机的cache目录/data/dalvik-cache/arm64,权限0711     LOG_ALWAYS_FATAL_IF((result < 0 && errno != EEXIST),             “Error creating cache dir %s : %s”, dalvikCacheDir, strerror(errno));

    // We always perform these steps because the directory might     // already exist, with wider permissions and a different owner     // than we’d like.     result = chown(dalvikCacheDir, AID_ROOT, AID_ROOT); // 改变/data/dalvik-cache/arm64的所有权,将owner和group都设为root     LOG_ALWAYS_FATAL_IF((result < 0), “Error changing dalvik-cache ownership : %s”, strerror(errno));

    result = chmod(dalvikCacheDir, 0711); // 设置权限0711     LOG_ALWAYS_FATAL_IF((result < 0),             “Error changing dalvik-cache permissions : %s”, strerror(errno)); }

1.3 InitializeNativeLoader

定义在system/core/libnativeloader/native_loader.cpp中 static std::mutex g_namespaces_mutex; static LibraryNamespaces* g_namespaces = new LibraryNamespaces;

void InitializeNativeLoader() { #if defined(__ANDROID__)     std::lock_guard<std::mutex> guard(g_namespaces_mutex);     g_namespaces->Initialize(); #endif }

二 AndroidRuntime

2.0 start

AndroidRuntime::start主要完成两项工作:1 启动虚拟机 ,2 调用className类的static void main(String args[])方法 定义在frameworks/base/core/jni/AndroidRuntime.cpp中 void AndroidRuntime::start(const char* className, const Vector<String8>& options, bool zygote) // className为com.android.internal.os.ZygoteInit,options为start-system-server,–abi-list=arm64-v8a,–socket-name=zygote,zygote为true {     ALOGD(“>>>>>> START %s uid %d <<<<<<\n”,             className != NULL ? className : “(unknown)”, getuid());

    static const String8 startSystemServer(“start-system-server”);

    /*      * ‘startSystemServer == true’ means runtime is obsolete and not run from      * init.rc anymore, so we print out the boot start event here.      */     for (size_t i = 0; i < options.size(); ++i) {         if (options[i] == startSystemServer) {            /* track our progress through the boot sequence */            const int LOG_BOOT_PROGRESS_START = 3000;            LOG_EVENT_LONG(LOG_BOOT_PROGRESS_START,  ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));         }     }

    const char* rootDir = getenv(“ANDROID_ROOT”); // 设置环境变量ANDROID_ROOT=/system     if (rootDir == NULL) {         rootDir = “/system”;         if (!hasDir(“/system”)) {             LOG_FATAL(“No root directory specified, and /android does not exist.”);             return;         }         setenv(“ANDROID_ROOT”, rootDir, 1);     }

    //const char* kernelHack = getenv(“LD_ASSUME_KERNEL”);     //ALOGD(“Found LD_ASSUME_KERNEL=’%s’\n”, kernelHack);

    /* start the virtual machine */     JniInvocation jni_invocation;     jni_invocation.Init(NULL); // 初始化jni接口     JNIEnv* env;     if (startVm(&mJavaVM, &env, zygote) != 0) { // 启动虚拟机         return;     }     onVmCreated(env); // 空函数

    /*      * Register android functions.      */     if (startReg(env) < 0) { // 注册JNI方法         ALOGE(“Unable to register all android natives\n”);         return;     }

    /*      * We want to call main() with a String array with arguments in it.      * At present we have two arguments, the class name and an option string.      * Create an array to hold them.      */     jclass stringClass;     jobjectArray strArray;     jstring classNameStr;

    stringClass = env->FindClass(“java/lang/String”);     assert(stringClass != NULL);     strArray = env->NewObjectArray(options.size() + 1, stringClass, NULL); // 新建对象数组     assert(strArray != NULL);     classNameStr = env->NewStringUTF(className);     assert(classNameStr != NULL);     env->SetObjectArrayElement(strArray, 0, classNameStr); //  strArray[0] = “com.android.internal.os.ZygoteInit”

    for (size_t i = 0; i < options.size(); ++i) {         jstring optionsStr = env->NewStringUTF(options.itemAt(i).string());         assert(optionsStr != NULL);         env->SetObjectArrayElement(strArray, i + 1, optionsStr);     }     // strArray[1] = “start-system-server”,strArray[2] = “–abi-list=arm64-v8a”,strArray[3] = “–socket-name=zygote”          /*      * Start VM.  This thread becomes the main thread of the VM, and will      * not return until the VM exits.      */     char* slashClassName = toSlashClassName(className); // 将”com.android.internal.os.ZygoteInit”转换为”com/android/internal/os/ZygoteInit”     jclass startClass = env->FindClass(slashClassName);     if (startClass == NULL) {         ALOGE(“JavaVM unable to locate class ‘%s’\n”, slashClassName);         /* keep going */     } else {         jmethodID startMeth = env->GetStaticMethodID(startClass, “main”,             “([Ljava/lang/String;)V”); // 查找ZygoteInit类的main()方法         if (startMeth == NULL) {             ALOGE(“JavaVM unable to find main() in ‘%s’\n”, className);             /* keep going */         } else {            
env->CallStaticVoidMethod(startClass, startMeth, strArray); // 调用ZygoteInit的main()方法,进入Java世界

#if 0             if (env->ExceptionCheck())                 threadExitUncaughtException(env); #endif         }     }     free(slashClassName); // 释放slashClassName的内存空间

    ALOGD(“Shutting down VM\n”);     if (mJavaVM->DetachCurrentThread() != JNI_OK) // 取消线程与jvm关联         ALOGW(“Warning: unable to detach main thread\n”);     if (mJavaVM->DestroyJavaVM() != 0) // 销毁Java虚拟机并回收资源         ALOGW(“Warning: VM did not shut down cleanly\n”); }

2.1 startVm

int AndroidRuntime::startVm(JavaVM** pJavaVM, JNIEnv** pEnv, bool zygote)
{
    JavaVMInitArgs initArgs;
    char propBuf[PROPERTY_VALUE_MAX];
    char stackTraceFileBuf[sizeof(“-Xstacktracefile:”)-1 + PROPERTY_VALUE_MAX];
    char jniOptsBuf[sizeof(“-Xjniopts:”)-1 + PROPERTY_VALUE_MAX];
    char heapstartsizeOptsBuf[sizeof(“-Xms”)-1 + PROPERTY_VALUE_MAX];
    char heapsizeOptsBuf[sizeof(“-Xmx”)-1 + PROPERTY_VALUE_MAX];
    char heapgrowthlimitOptsBuf[sizeof(“-XX:HeapGrowthLimit=”)-1 + PROPERTY_VALUE_MAX];
    char heapminfreeOptsBuf[sizeof(“-XX:HeapMinFree=”)-1 + PROPERTY_VALUE_MAX];
    char heapmaxfreeOptsBuf[sizeof(“-XX:HeapMaxFree=”)-1 + PROPERTY_VALUE_MAX];
    char usejitOptsBuf[sizeof(“-Xusejit:”)-1 + PROPERTY_VALUE_MAX];
    char jitmaxsizeOptsBuf[sizeof(“-Xjitmaxsize:”)-1 + PROPERTY_VALUE_MAX];
    char jitinitialsizeOptsBuf[sizeof(“-Xjitinitialsize:”)-1 + PROPERTY_VALUE_MAX];
    char jitthresholdOptsBuf[sizeof(“-Xjitthreshold:”)-1 + PROPERTY_VALUE_MAX];
    char jitprithreadweightOptBuf[sizeof(“-Xjitprithreadweight:”)-1 + PROPERTY_VALUE_MAX];
    char gctypeOptsBuf[sizeof(“-Xgc:”)-1 + PROPERTY_VALUE_MAX];
    char backgroundgcOptsBuf[sizeof(“-XX:BackgroundGC=”)-1 + PROPERTY_VALUE_MAX];
    char heaptargetutilizationOptsBuf[sizeof(“-XX:HeapTargetUtilization=”)-1 + PROPERTY_VALUE_MAX];
    char cachePruneBuf[sizeof(“-Xzygote-max-boot-retry=”)-1 + PROPERTY_VALUE_MAX];
    char dex2oatXmsImageFlagsBuf[sizeof(“-Xms”)-1 + PROPERTY_VALUE_MAX];
    char dex2oatXmxImageFlagsBuf[sizeof(“-Xmx”)-1 + PROPERTY_VALUE_MAX];
    char dex2oatXmsFlagsBuf[sizeof(“-Xms”)-1 + PROPERTY_VALUE_MAX];
    char dex2oatXmxFlagsBuf[sizeof(“-Xmx”)-1 + PROPERTY_VALUE_MAX];
    char dex2oatCompilerFilterBuf[sizeof(“–compiler-filter=”)-1 + PROPERTY_VALUE_MAX];
    char dex2oatImageCompilerFilterBuf[sizeof(“–compiler-filter=”)-1 + PROPERTY_VALUE_MAX];
    char dex2oatThreadsBuf[sizeof(“-j”)-1 + PROPERTY_VALUE_MAX];
    char dex2oatThreadsImageBuf[sizeof(“-j”)-1 + PROPERTY_VALUE_MAX];
    char dex2oat_isa_variant_key[PROPERTY_KEY_MAX];
    char dex2oat_isa_variant[sizeof(“–instruction-set-variant=”) -1 + PROPERTY_VALUE_MAX];
    char dex2oat_isa_features_key[PROPERTY_KEY_MAX];
    char dex2oat_isa_features[sizeof(“–instruction-set-features=”) -1 + PROPERTY_VALUE_MAX];
    char dex2oatFlagsBuf[PROPERTY_VALUE_MAX];
    char dex2oatImageFlagsBuf[PROPERTY_VALUE_MAX];
    char extraOptsBuf[PROPERTY_VALUE_MAX];
    char voldDecryptBuf[PROPERTY_VALUE_MAX];
    enum {
      kEMDefault,
      kEMIntPortable,
      kEMIntFast,
      kEMJitCompiler,
    } executionMode = kEMDefault;
    char localeOption[sizeof(“-Duser.locale=”) + PROPERTY_VALUE_MAX];
    char lockProfThresholdBuf[sizeof(“-Xlockprofthreshold:”)-1 + PROPERTY_VALUE_MAX];
    char nativeBridgeLibrary[sizeof(“-XX:NativeBridge=”) + PROPERTY_VALUE_MAX];
    char cpuAbiListBuf[sizeof(“–cpu-abilist=”) + PROPERTY_VALUE_MAX];
    char methodTraceFileBuf[sizeof(“-Xmethod-trace-file:”) + PROPERTY_VALUE_MAX];
    char methodTraceFileSizeBuf[sizeof(“-Xmethod-trace-file-size:”) + PROPERTY_VALUE_MAX];
    char fingerprintBuf[sizeof(“-Xfingerprint:”) + PROPERTY_VALUE_MAX];


    bool checkJni = false;
    property_get(“dalvik.vm.checkjni”, propBuf, “”); // JNI检测功能,用于native层调用jni函数时进行常规检测
    if (strcmp(propBuf, “true”) == 0) {
        checkJni = true;
    } else if (strcmp(propBuf, “false”) != 0) {
        /* property is neither true nor false; fall back on kernel parameter */
        property_get(“ro.kernel.android.checkjni”, propBuf, “”);
        if (propBuf[0] == ‘1’) {
            checkJni = true;
        }
    }
    ALOGD(“CheckJNI is %s\n”, checkJni ? “ON” : “OFF”);
    if (checkJni) {
        /* extended JNI checking */
        addOption(“-Xcheck:jni”);


        /* with -Xcheck:jni, this provides a JNI function call trace */
        //addOption(“-verbose:jni”);
    }


    property_get(“dalvik.vm.execution-mode”, propBuf, “”);
    if (strcmp(propBuf, “int:portable”) == 0) {
        executionMode = kEMIntPortable;
    } else if (strcmp(propBuf, “int:fast”) == 0) {
        executionMode = kEMIntFast;
    } else if (strcmp(propBuf, “int:jit”) == 0) {
        executionMode = kEMJitCompiler;
    }


    parseRuntimeOption(“dalvik.vm.stack-trace-file”, stackTraceFileBuf, “-Xstacktracefile:”); // -Xstacktracefile:/data/anr/traces.txt // Java虚拟机接收到SIGQUIT(Ctrl-\或者kill -3)信号之后,会将所有线程的调用堆栈输出输出到/data/anr/traces.txt


    strcpy(jniOptsBuf, “-Xjniopts:”);
    if (parseRuntimeOption(“dalvik.vm.jniopts”, jniOptsBuf, “-Xjniopts:”)) { // JNI检测选项
        ALOGI(“JNI options: ‘%s’\n”, jniOptsBuf);
    }


    /* route exit() to our handler */
    addOption(“exit”, (void*) runtime_exit); // 添加Java虚拟机选项,当Java虚拟机退出时执行runtime_exit方法


    /* route fprintf() to our handler */
    addOption(“vfprintf”, (void*) runtime_vfprintf); // 当Java虚拟机调用vfprintf时,调用runtime_vfprintf方法


    /* register the framework-specific “is sensitive thread” hook */
    addOption(“sensitiveThread”, (void*) runtime_isSensitiveThread);


    /* enable verbose; standard options are { jni, gc, class } */
    //addOption(“-verbose:jni”);
    addOption(“-verbose:gc”);
    //addOption(“-verbose:class”);


    /*
     * The default starting and maximum size of the heap.  Larger
     * values should be specified in a product property override.
     */
    parseRuntimeOption(“dalvik.vm.heapstartsize”, heapstartsizeOptsBuf, “-Xms”, “4m”);
    parseRuntimeOption(“dalvik.vm.heapsize”, heapsizeOptsBuf, “-Xmx”, “16m”); // 设置虚拟机的heapsize,默认为16M


    parseRuntimeOption(“dalvik.vm.heapgrowthlimit”, heapgrowthlimitOptsBuf, “-XX:HeapGrowthLimit=”);
    parseRuntimeOption(“dalvik.vm.heapminfree”, heapminfreeOptsBuf, “-XX:HeapMinFree=”);
    parseRuntimeOption(“dalvik.vm.heapmaxfree”, heapmaxfreeOptsBuf, “-XX:HeapMaxFree=”);
    parseRuntimeOption(“dalvik.vm.heaptargetutilization”,
                       heaptargetutilizationOptsBuf,
                       “-XX:HeapTargetUtilization=”);


    /*
     * JIT related options.
     */
    parseRuntimeOption(“dalvik.vm.usejit”, usejitOptsBuf, “-Xusejit:”);
    parseRuntimeOption(“dalvik.vm.jitmaxsize”, jitmaxsizeOptsBuf, “-Xjitmaxsize:”);
    parseRuntimeOption(“dalvik.vm.jitinitialsize”, jitinitialsizeOptsBuf, “-Xjitinitialsize:”);
    parseRuntimeOption(“dalvik.vm.jitthreshold”, jitthresholdOptsBuf, “-Xjitthreshold:”);
    parseRuntimeOption(“dalvik.vm.jitprithreadweight”,
                       jitprithreadweightOptBuf,
                       “-Xjitprithreadweight:”);


    property_get(“ro.config.low_ram”, propBuf, “”);
    if (strcmp(propBuf, “true”) == 0) {
      addOption(“-XX:LowMemoryMode”);
    }


    parseRuntimeOption(“dalvik.vm.gctype”, gctypeOptsBuf, “-Xgc:”);
    parseRuntimeOption(“dalvik.vm.backgroundgctype”, backgroundgcOptsBuf, “-XX:BackgroundGC=”);


    /*
     * Enable debugging only for apps forked from zygote.
     * Set suspend=y to pause during VM init and use android ADB transport.
     */
    if (zygote) {
      addOption(“-agentlib:jdwp=transport=dt_android_adb,suspend=n,server=y”); //
    }


    parseRuntimeOption(“dalvik.vm.lockprof.threshold”,
                       lockProfThresholdBuf,
                       “-Xlockprofthreshold:”);


    if (executionMode == kEMIntPortable) {
        addOption(“-Xint:portable”);
    } else if (executionMode == kEMIntFast) {
        addOption(“-Xint:fast”);
    } else if (executionMode == kEMJitCompiler) {
        addOption(“-Xint:jit”);
    }


    // If we are booting without the real /data, don’t spend time compiling.
    property_get(“vold.decrypt”, voldDecryptBuf, “”);
    bool skip_compilation = ((strcmp(voldDecryptBuf, “trigger_restart_min_framework”) == 0) ||
                             (strcmp(voldDecryptBuf, “1”) == 0));


    // Extra options for boot.art/boot.oat image generation.
    parseCompilerRuntimeOption(“dalvik.vm.image-dex2oat-Xms”, dex2oatXmsImageFlagsBuf,
                               “-Xms”, “-Ximage-compiler-option”);
    parseCompilerRuntimeOption(“dalvik.vm.image-dex2oat-Xmx”, dex2oatXmxImageFlagsBuf,
                               “-Xmx”, “-Ximage-compiler-option”);
    if (skip_compilation) {
        addOption(“-Ximage-compiler-option”);
        addOption(“–compiler-filter=verify-none”);
    } else {
        parseCompilerOption(“dalvik.vm.image-dex2oat-filter”, dex2oatImageCompilerFilterBuf,
                            “–compiler-filter=”, “-Ximage-compiler-option”);
    }


    // Make sure there is a preloaded-classes file.
    if (!hasFile(“/system/etc/preloaded-classes”)) {
        ALOGE(“Missing preloaded-classes file, /system/etc/preloaded-classes not found: %s\n”,
              strerror(errno));
        return -1;
    }
    addOption(“-Ximage-compiler-option”);
    addOption(“–image-classes=/system/etc/preloaded-classes”);


    // If there is a compiled-classes file, push it.
    if (hasFile(“/system/etc/compiled-classes”)) {
        addOption(“-Ximage-compiler-option”);
        addOption(“–compiled-classes=/system/etc/compiled-classes”);
    }


    property_get(“dalvik.vm.image-dex2oat-flags”, dex2oatImageFlagsBuf, “”);
    parseExtraOpts(dex2oatImageFlagsBuf, “-Ximage-compiler-option”);


    // Extra options for DexClassLoader.
    parseCompilerRuntimeOption(“dalvik.vm.dex2oat-Xms”, dex2oatXmsFlagsBuf,
                               “-Xms”, “-Xcompiler-option”);
    parseCompilerRuntimeOption(“dalvik.vm.dex2oat-Xmx”, dex2oatXmxFlagsBuf,
                               “-Xmx”, “-Xcompiler-option”);
    if (skip_compilation) {
        addOption(“-Xcompiler-option”);
        addOption(“–compiler-filter=verify-none”);


        // We skip compilation when a minimal runtime is brought up for decryption. In that case
        // /data is temporarily backed by a tmpfs, which is usually small.
        // If the system image contains prebuilts, they will be relocated into the tmpfs. In this
        // specific situation it is acceptable to *not* relocate and run out of the prebuilts
        // directly instead.
        addOption(“–runtime-arg”);
        addOption(“-Xnorelocate”);
    } else {
        parseCompilerOption(“dalvik.vm.dex2oat-filter”, dex2oatCompilerFilterBuf,
                            “–compiler-filter=”, “-Xcompiler-option”);
    }
    parseCompilerOption(“dalvik.vm.dex2oat-threads”, dex2oatThreadsBuf, “-j”, “-Xcompiler-option”);
    parseCompilerOption(“dalvik.vm.image-dex2oat-threads”, dex2oatThreadsImageBuf, “-j”,
                        “-Ximage-compiler-option”);


    // The runtime will compile a boot image, when necessary, not using installd. Thus, we need to
    // pass the instruction-set-features/variant as an image-compiler-option.
    // TODO: Find a better way for the instruction-set.
#if defined(__arm__)
    constexpr const char* instruction_set = “arm”;
#elif defined(__aarch64__)
    constexpr const char* instruction_set = “arm64”;
#elif defined(__mips__) && !defined(__LP64__)
    constexpr const char* instruction_set = “mips”;
#elif defined(__mips__) && defined(__LP64__)
    constexpr const char* instruction_set = “mips64”;
#elif defined(__i386__)
    constexpr const char* instruction_set = “x86”;
#elif defined(__x86_64__)
    constexpr const char* instruction_set = “x86_64”;
#else
    constexpr const char* instruction_set = “unknown”;
#endif
    // Note: it is OK to reuse the buffer, as the values are exactly the same between
    //       * compiler-option, used for runtime compilation (DexClassLoader)
    //       * image-compiler-option, used for boot-image compilation on device


    // Copy the variant.
    sprintf(dex2oat_isa_variant_key, “dalvik.vm.isa.%s.variant”, instruction_set);
    parseCompilerOption(dex2oat_isa_variant_key, dex2oat_isa_variant,
                        “–instruction-set-variant=”, “-Ximage-compiler-option”);
    parseCompilerOption(dex2oat_isa_variant_key, dex2oat_isa_variant,
                        “–instruction-set-variant=”, “-Xcompiler-option”);
    // Copy the features.
    sprintf(dex2oat_isa_features_key, “dalvik.vm.isa.%s.features”, instruction_set);
    parseCompilerOption(dex2oat_isa_features_key, dex2oat_isa_features,
                        “–instruction-set-features=”, “-Ximage-compiler-option”);
    parseCompilerOption(dex2oat_isa_features_key, dex2oat_isa_features,
                        “–instruction-set-features=”, “-Xcompiler-option”);




    property_get(“dalvik.vm.dex2oat-flags”, dex2oatFlagsBuf, “”);
    parseExtraOpts(dex2oatFlagsBuf, “-Xcompiler-option”);


    /* extra options; parse this late so it overrides others */
    property_get(“dalvik.vm.extra-opts”, extraOptsBuf, “”);
    parseExtraOpts(extraOptsBuf, NULL);


    /* Set the properties for locale */
    {
        strcpy(localeOption, “-Duser.locale=”);
        const std::string locale = readLocale();
        strncat(localeOption, locale.c_str(), PROPERTY_VALUE_MAX);
        addOption(localeOption);
    }


    // Trace files are stored in /data/misc/trace which is writable only in debug mode.
    property_get(“ro.debuggable”, propBuf, “0”);
    if (strcmp(propBuf, “1”) == 0) {
        property_get(“dalvik.vm.method-trace”, propBuf, “false”);
        if (strcmp(propBuf, “true”) == 0) {
            addOption(“-Xmethod-trace”);
            parseRuntimeOption(“dalvik.vm.method-trace-file”,
                               methodTraceFileBuf,
                               “-Xmethod-trace-file:”);
            parseRuntimeOption(“dalvik.vm.method-trace-file-siz”,
                               methodTraceFileSizeBuf,
                               “-Xmethod-trace-file-size:”);
            property_get(“dalvik.vm.method-trace-stream”, propBuf, “false”);
            if (strcmp(propBuf, “true”) == 0) {
                addOption(“-Xmethod-trace-stream”);
            }
        }
    }


    // Native bridge library. “0” means that native bridge is disabled.
    property_get(“ro.dalvik.vm.native.bridge”, propBuf, “”);
    if (propBuf[0] == ‘\0’) {
        ALOGW(“ro.dalvik.vm.native.bridge is not expected to be empty”);
    } else if (strcmp(propBuf, “0”) != 0) {
        snprintf(nativeBridgeLibrary, sizeof(“-XX:NativeBridge=”) + PROPERTY_VALUE_MAX,
                 “-XX:NativeBridge=%s”, propBuf);
        addOption(nativeBridgeLibrary);
    }


#if defined(__LP64__)
    const char* cpu_abilist_property_name = “ro.product.cpu.abilist64”;
#else
    const char* cpu_abilist_property_name = “ro.product.cpu.abilist32”;
#endif  // defined(__LP64__)
    property_get(cpu_abilist_property_name, propBuf, “”);
    if (propBuf[0] == ‘\0’) {
        ALOGE(“%s is not expected to be empty”, cpu_abilist_property_name);
        return -1;
    }
    snprintf(cpuAbiListBuf, sizeof(cpuAbiListBuf), “–cpu-abilist=%s”, propBuf);
    addOption(cpuAbiListBuf); // ABI: arm64-v8a


    // Dalvik-cache pruning counter.
    parseRuntimeOption(“dalvik.vm.zygote.max-boot-retry”, cachePruneBuf,
                       “-Xzygote-max-boot-retry=”);


    /*
     * When running with debug.generate-debug-info, add –generate-debug-info to
     * the compiler options so that the boot image, if it is compiled on device,
     * will include native debugging information.
     */
    property_get(“debug.generate-debug-info”, propBuf, “”);
    if (strcmp(propBuf, “true”) == 0) {
        addOption(“-Xcompiler-option”);
        addOption(“–generate-debug-info”);
        addOption(“-Ximage-compiler-option”);
        addOption(“–generate-debug-info”);
    }


    /*
     * Retrieve the build fingerprint and provide it to the runtime. That way, ANR dumps will
     * contain the fingerprint and can be parsed.
     */
    parseRuntimeOption(“ro.build.fingerprint”, fingerprintBuf, “-Xfingerprint:”);
    // 以上代码主要是在读取dalvik.vm.*
属性然后设置Java虚拟机参数


    initArgs.version = JNI_VERSION_1_4;
    initArgs.options = mOptions.editArray();
    initArgs.nOptions = mOptions.size();
    initArgs.ignoreUnrecognized = JNI_FALSE;


    /*
     * Initialize the VM.
     *
     * The JavaVM* is essentially per-process, and the JNIEnv* is per-thread.
     * If this call succeeds, the VM is ready, and we can start issuing
     * JNI calls.
     */
    if (JNI_CreateJavaVM(pJavaVM, pEnv, &initArgs) < 0) { // 创建Java虚拟机 // 最终调用的是art/runtime/java_vm_ext.cc中的JNI_CreateJavaVM函数
        ALOGE(“JNI_CreateJavaVM failed\n”);
        return -1;
    }


    return 0;
}


// art/runtime/java_vm_ext.cc中的JNI_CreateJavaVM函数
extern “C” jint JNI_CreateJavaVM(JavaVM** p_vm, JNIEnv** p_env, void* vm_args) {
  ScopedTrace trace(__FUNCTION__);
  const JavaVMInitArgs* args = static_cast<JavaVMInitArgs*>(vm_args);
  if (IsBadJniVersion(args->version)) {
    LOG(ERROR) << “Bad JNI version passed to CreateJavaVM: ” << args->version;
    return JNI_EVERSION;
  }
  RuntimeOptions options;
  for (int i = 0; i < args->nOptions; ++i) {
    JavaVMOption* option = &args->options[i];
    options.push_back(std::make_pair(std::string(option->optionString), option->extraInfo));
  }
  bool ignore_unrecognized = args->ignoreUnrecognized;
  if (!Runtime::Create(options, ignore_unrecognized)) {  // 创建Runtime
    return JNI_ERR;
  }
  Runtime* runtime = Runtime::Current();
  bool started = runtime->Start(); // Runtime::start()
  if (!started) {
    delete Thread::Current()->GetJniEnv();
    delete runtime->GetJavaVM();
    LOG(WARNING) << “CreateJavaVM failed”;
    return JNI_ERR;
  }
  *p_env = Thread::Current()->GetJniEnv();
  *p_vm = runtime->GetJavaVM();
  return JNI_OK;
}

2.2 startReg

/*static*/ int AndroidRuntime::startReg(JNIEnv* env) {     ATRACE_NAME(“RegisterAndroidNatives”);     /*      * This hook causes all future threads created in this process to be      * attached to the JavaVM.  (This needs to go away in favor of JNI      * Attach calls.)      */     androidSetCreateThreadFunc((android_create_thread_fn) javaCreateThreadEtc); // 设置线程创建方法为javaCreateThreadEtc

    ALOGV(“— registering native functions —\n”);

    /*      * Every “register” function calls one or more things that return      * a local reference (e.g. FindClass).  Because we haven’t really      * started the VM yet, they’re all getting stored in the base frame      * and never released.  Use Push/Pop to manage the storage.      */     env->PushLocalFrame(200); // 为200个局部引用创建堆栈

    if (register_jni_procs(gRegJNI, NELEM(gRegJNI), env) < 0) { // 注册JNI函数,gRegJNI是一个全局数组,存放上百个需要注册的jni函数         env->PopLocalFrame(NULL);         return -1;     }     env->PopLocalFrame(NULL); // 销毁堆栈

    //createJavaThread(“fubar”, quickTest, (void*) “hello”);

    return 0; }


三 ZygoteInit

3.0 main

定义在frameworks/base/core/java/com/android/internal/os/ZygoteInit.java中 public static void main(String argv[]) {     try {         Trace.traceBegin(Trace.TRACE_TAG_DALVIK, “ZygoteInit”); // 开始Systrace追踪ZygoteInit         RuntimeInit.enableDdms(); // 使能DDMS功能 // Dalvik Debug Monitor Service虚拟机调试服务         // Start profiling the zygote initialization.         SamplingProfilerIntegration.start(); // 启动性能统计

        boolean startSystemServer = false;         String socketName = “zygote”;         String abiList = null;         for (int i = 1; i < argv.length; i++) {             if (“start-system-server”.equals(argv[i])) {                 startSystemServer = true;             } else if (argv[i].startsWith(ABI_LIST_ARG)) {                 abiList = argv[i].substring(ABI_LIST_ARG.length());             } else if (argv[i].startsWith(SOCKET_NAME_ARG)) {                 socketName = argv[i].substring(SOCKET_NAME_ARG.length());             } else {                 throw new RuntimeException(“Unknown command line argument: ” + argv[i]);             }         }                  // 从for循环出来后,startSystemServer为true,abiList为arm64-v8a,socketName为zygote

        if (abiList == null) {             throw new RuntimeException(“No ABI list supplied.”);         }

        registerZygoteSocket(socketName); // 注册zygote使用的socket         Trace.traceBegin(Trace.TRACE_TAG_DALVIK, “ZygotePreload”); // 开始Systrace追踪ZygotePreload         EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,             SystemClock.uptimeMillis());         preload(); // 预加载类和资源 // 这里可以进行优化以提升开机速度         EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,             SystemClock.uptimeMillis());         Trace.traceEnd(Trace.TRACE_TAG_DALVIK); // 停止Systrace追踪ZygotePreload

        // Finish profiling the zygote initialization.         SamplingProfilerIntegration.writeZygoteSnapshot(); // 结束性能统计并生成结果文件,保存在/data/snapshots

        // Do an initial gc to clean up after startup         Trace.traceBegin(Trace.TRACE_TAG_DALVIK, “PostZygoteInitGC”); // 开始Systrace追踪PostZygoteInitGC         gcAndFinalize(); // 强制垃圾回收         Trace.traceEnd(Trace.TRACE_TAG_DALVIK); // 停止Systrace追踪PostZygoteInitGC

        Trace.traceEnd(Trace.TRACE_TAG_DALVIK); // 停止Systrace追踪ZygoteInit

        // Disable tracing so that forked processes do not inherit stale tracing tags from         // Zygote.         Trace.setTracingEnabled(false); // 禁止Systrace追踪 

        // Zygote process unmounts root storage spaces.         Zygote.nativeUnmountStorageOnInit(); // 空函数

        if (startSystemServer) {            
startSystemServer(abiList, socketName); // 启动system_server进程 // 单独分析         }

        Log.i(TAG, “Accepting command socket connections”);         runSelectLoop(abiList); // Zygote无限循环等待创建进程的请求

        closeServerSocket(); // 退出时关闭服务器端Socket     } catch (MethodAndArgsCaller caller) {         caller.run(); // 在system_serer进程中,以反射方式调用SystemServer类的main方法     } catch (RuntimeException ex) {         Log.e(TAG, “Zygote died with exception”, ex);         closeServerSocket();         throw ex;     } }

3.1 registerZygoteSocket

private static void registerZygoteSocket(String socketName) {     if (sServerSocket == null) {         int fileDesc;         final String fullSocketName = ANDROID_SOCKET_PREFIX + socketName; // 获取socket描述字符串 // ANDROID_SOCKET_zygote         try {             String env = System.getenv(fullSocketName); // 从环境变量中获取ANDROID_SOCKET_zygote             fileDesc = Integer.parseInt(env); // 获取socket文件描述符         } catch (RuntimeException ex) {             throw new RuntimeException(fullSocketName + ” unset or invalid”, ex);         }

        try {             FileDescriptor fd = new FileDescriptor();             fd.setInt$(fileDesc);             sServerSocket = new LocalServerSocket(fd);  // 创建服务端Socket         } catch (IOException ex) {             throw new RuntimeException(                     “Error binding to local socket ‘” + fileDesc + “‘”, ex);         }     } }

public LocalServerSocket(FileDescriptor fd) throws IOException {     impl = new LocalSocketImpl(fd);     impl.listen(LISTEN_BACKLOG);     localAddress = impl.getSockAddress(); }

3.2 preload

static void preload() {     Log.d(TAG, “begin preload”);     Trace.traceBegin(Trace.TRACE_TAG_DALVIK, “PreloadClasses”);     preloadClasses(); // 预加载/system/etc/preloaded-classes文件中的类     Trace.traceEnd(Trace.TRACE_TAG_DALVIK);     Trace.traceBegin(Trace.TRACE_TAG_DALVIK, “PreloadResources”);     preloadResources(); //预加载drawable和color资源     Trace.traceEnd(Trace.TRACE_TAG_DALVIK);     Trace.traceBegin(Trace.TRACE_TAG_DALVIK, “PreloadOpenGL”);     preloadOpenGL(); // 预加载OpenGL     Trace.traceEnd(Trace.TRACE_TAG_DALVIK);     preloadSharedLibraries(); // 预加载”android”,”compiler_rt”,”jnigraphics”共享库     preloadTextResources(); //预加载text资源     // Ask the WebViewFactory to do any initialization that must run in the zygote process,     // for memory sharing purposes.     WebViewFactory.prepareWebViewInZygote(); // 预加载WebView库     Log.d(TAG, “end preload”); }

3.3 gcAndFinalize

/*package*/ static void gcAndFinalize() {     final VMRuntime runtime = VMRuntime.getRuntime();

    /* runFinalizationSync() lets finalizers be called in Zygote,      * which doesn’t have a HeapWorker thread.      */     System.gc();     runtime.runFinalizationSync();     System.gc(); }

3.4 runSelectLoop

private static void runSelectLoop(String abiList) throws MethodAndArgsCaller {     ArrayList<FileDescriptor> fds = new ArrayList<FileDescriptor>();     ArrayList<ZygoteConnection> peers = new ArrayList<ZygoteConnection>();

    fds.add(sServerSocket.getFileDescriptor()); // sServerSocket就是之前registerZygoteSocket建立的服务器端Socket     peers.add(null);

    while (true) { // 循环等待请求         StructPollfd[] pollFds = new StructPollfd[fds.size()];         for (int i = 0; i < pollFds.length; ++i) {             pollFds[i] = new StructPollfd();             pollFds[i].fd = fds.get(i);             pollFds[i].events = (short) POLLIN; // POLLIN表示有数据可读         }         try {             Os.poll(pollFds, -1); // 监视pollFds中的文件描述符         } catch (ErrnoException ex) {             throw new RuntimeException(“poll failed”, ex);         }         for (int i = pollFds.length – 1; i >= 0; –i) {             if ((pollFds[i].revents & POLLIN) == 0) { // 判断是否有数据可读                 continue;             }             if (i == 0) { // i等于0时,建立连接                 ZygoteConnection newPeer = acceptCommandPeer(abiList); // 接受新的socket连接并创建一个ZygoteConnection                 peers.add(newPeer);                 fds.add(newPeer.getFileDesciptor()); // 将socket连接的文件描述符添加到fds,再下一个while循环开始监视             } else { // i不等于0时,接收数据,并处理                 boolean done = peers.get(i).
runOnce();  // 调用对应ZygoteConnection的runOnce                 if (done) {                     peers.remove(i);                     fds.remove(i);                 }             }         }     } }

3.5 closeServerSocket

static void closeServerSocket() {     try {         if (sServerSocket != null) {             FileDescriptor fd = sServerSocket.getFileDescriptor();             sServerSocket.close();             if (fd != null) {                 Os.close(fd);             }         }     } catch (IOException ex) {         Log.e(TAG, “Zygote:  error closing sockets”, ex);     } catch (ErrnoException ex) {         Log.e(TAG, “Zygote:  error closing descriptor”, ex);     }

    sServerSocket = null; }

以下内容摘录自《深入理解 Android 卷I》关于 Zygote的总结 Zygote是创建Android系统中Java世界的盘古,它创建了第一个Java虚拟机,同时它又是女娲,它成功地繁殖了framework的核心system_server进程。做为Java语言的受益者,我们理应回顾一下Zygote创建Java世界的步骤: ·  第一天:创建AppRuntime对象,并调用它的start。此后的活动则由AppRuntime来控制。 ·  第二天:调用startVm创建Java虚拟机,然后调用startReg来注册JNI函数。 ·  第三天:通过JNI调用com.android.internal.os.ZygoteInit类的main函数,从此进入了Java世界。然而在这个世界刚开创的时候,什么东西都没有。 ·  第四天:调用registerZygoteSocket。通过这个函数,它可以响应子孙后代的请求。同时Zygote调用preloadClasses和preloadResources,为Java世界添砖加瓦。 ·  第五天:Zygote觉得自己工作压力太大,便通过调用startSystemServer分裂一个子进程system_server来为Java世界服务。 ·  第六天:Zygote完成了Java世界的初创工作,它已经很满足了。下一步该做的就是调用runSelectLoopMode后,便沉沉地睡去了。 ·  以后的日子:Zygote随时守护在我们的周围,当接收到子孙后代的请求时,它会随时醒来,为它们工作。

如果让我来做对比,我更愿意将Init比作盘古,Zygote比作女娲,SystemServer比作伏羲。

    原文作者:Android源码分析
    原文地址: https://blog.csdn.net/xichangbao/article/details/53104810
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞