我将OpenACC指令添加到我的红黑高斯 – 赛德尔求解器中用于拉普拉斯方程(一个简单的加热板问题),但GPU加速代码并不比CPU快,即使对于大问题也是如此.
我还写了一个CUDA版本,这比两者都要快得多(512×512,大约2秒,而CPU和OpenACC则为25).
任何人都可以想到这种差异的原因吗?我意识到CUDA提供了最大的潜在速度,但是对于更大的问题,OpenACC应该比CPU提供更好的东西(比如Jacoga求解器对于同样的问题所展示的here).
这是相关代码(完整的工作源是here):
#pragma acc data copyin(aP[0:size], aW[0:size], aE[0:size], aS[0:size], aN[0:size], b[0:size]) copy(temp_red[0:size_temp], temp_black[0:size_temp])
// red-black Gauss-Seidel with SOR iteration loop
for (iter = 1; iter <= it_max; ++iter) {
Real norm_L2 = 0.0;
// update red cells
#pragma omp parallel for shared(aP, aW, aE, aS, aN, temp_black, temp_red) \
reduction(+:norm_L2)
#pragma acc kernels present(aP[0:size], aW[0:size], aE[0:size], aS[0:size], aN[0:size], b[0:size], temp_red[0:size_temp], temp_black[0:size_temp])
#pragma acc loop independent gang vector(4)
for (int col = 1; col < NUM + 1; ++col) {
#pragma acc loop independent gang vector(64)
for (int row = 1; row < (NUM / 2) + 1; ++row) {
int ind_red = col * ((NUM / 2) + 2) + row; // local (red) index
int ind = 2 * row - (col % 2) - 1 + NUM * (col - 1); // global index
#pragma acc cache(aP[ind], b[ind], aW[ind], aE[ind], aS[ind], aN[ind])
Real res = b[ind] + (aW[ind] * temp_black[row + (col - 1) * ((NUM / 2) + 2)]
+ aE[ind] * temp_black[row + (col + 1) * ((NUM / 2) + 2)]
+ aS[ind] * temp_black[row - (col % 2) + col * ((NUM / 2) + 2)]
+ aN[ind] * temp_black[row + ((col + 1) % 2) + col * ((NUM / 2) + 2)]);
Real temp_old = temp_red[ind_red];
temp_red[ind_red] = temp_old * (1.0 - omega) + omega * (res / aP[ind]);
// calculate residual
res = temp_red[ind_red] - temp_old;
norm_L2 += (res * res);
} // end for row
} // end for col
// update black cells
#pragma omp parallel for shared(aP, aW, aE, aS, aN, temp_black, temp_red) \
reduction(+:norm_L2)
#pragma acc kernels present(aP[0:size], aW[0:size], aE[0:size], aS[0:size], aN[0:size], b[0:size], temp_red[0:size_temp], temp_black[0:size_temp])
#pragma acc loop independent gang vector(4)
for (int col = 1; col < NUM + 1; ++col) {
#pragma acc loop independent gang vector(64)
for (int row = 1; row < (NUM / 2) + 1; ++row) {
int ind_black = col * ((NUM / 2) + 2) + row; // local (black) index
int ind = 2 * row - ((col + 1) % 2) - 1 + NUM * (col - 1); // global index
#pragma acc cache(aP[ind], b[ind], aW[ind], aE[ind], aS[ind], aN[ind])
Real res = b[ind] + (aW[ind] * temp_red[row + (col - 1) * ((NUM / 2) + 2)]
+ aE[ind] * temp_red[row + (col + 1) * ((NUM / 2) + 2)]
+ aS[ind] * temp_red[row - ((col + 1) % 2) + col * ((NUM / 2) + 2)]
+ aN[ind] * temp_red[row + (col % 2) + col * ((NUM / 2) + 2)]);
Real temp_old = temp_black[ind_black];
temp_black[ind_black] = temp_old * (1.0 - omega) + omega * (res / aP[ind]);
// calculate residual
res = temp_black[ind_black] - temp_old;
norm_L2 += (res * res);
} // end for row
} // end for col
// calculate residual
norm_L2 = sqrt(norm_L2 / ((Real)size));
if(iter % 100 == 0) printf("%5d, %0.6f\n", iter, norm_L2);
// if tolerance has been reached, end SOR iterations
if (norm_L2 < tol) {
break;
}
}
最佳答案 好吧,我发现了一种半解决方案,可以减少较小问题的时间.
如果我插入行:
acc_init(acc_device_nvidia);
acc_set_device_num(0, acc_device_nvidia);
在我启动计时器之前,为了激活和设置GPU,512×512问题的时间下降到9.8秒,而1024×1024下降到42.增加问题的大小进一步表明,即使OpenACC与在四个CPU核心上运行相比也有多快.
通过这种改变,OpenACC代码比CUDA代码慢2倍,随着问题规模越来越大,差距越来越小(~1.2).