我正在使用以下正则表达式,它假设找到字符串’U.S.A.’,但它只获得’A’,是否有人知道什么是错的?
#INPUT
import re
text = 'That U.S.A. poster-print costs $12.40...'
print re.findall(r'([A-Z]\.)+', text)
#OUTPUT
['A.']
预期产出:
['U.S.A.']
我正在关注NLTK Book,第3.7章here,它有一套正则表达式,但它只是不起作用.我在Python 2.7和3.4中都尝试过它.
>>> text = 'That U.S.A. poster-print costs $12.40...'
>>> pattern = r'''(?x) # set flag to allow verbose regexps
... ([A-Z]\.)+ # abbreviations, e.g. U.S.A.
... | \w+(-\w+)* # words with optional internal hyphens
... | \$?\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%
... | \.\.\. # ellipsis
... | [][.,;"'?():-_`] # these are separate tokens; includes ], [
... '''
>>> nltk.regexp_tokenize(text, pattern)
['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...']
nltk.regexp_tokenize()与re.findall()的工作方式相同,我想我的python在某种程度上无法按预期识别正则表达式.上面列出的正则表达式输出:
[('', '', ''),
('A.', '', ''),
('', '-print', ''),
('', '', ''),
('', '', '.40'),
('', '', '')]
最佳答案 可能,这与先前使用在v3.1中废除的nltk.internals.compile_regexp_to_noncapturing()编译正则表达式有关,参见
here)
>>> import nltk
>>> nltk.__version__
'3.0.5'
>>> pattern = r'''(?x) # set flag to allow verbose regexps
... ([A-Z]\.)+ # abbreviations, e.g. U.S.A.
... | \$?\d+(\.\d+)?%? # numbers, incl. currency and percentages
... | \w+([-']\w+)* # words w/ optional internal hyphens/apostrophe
... | [+/\-@&*] # special characters with meanings
... '''
>>>
>>> from nltk.tokenize.regexp import RegexpTokenizer
>>> tokeniser=RegexpTokenizer(pattern)
>>> line="My weight is about 68 kg, +/- 10 grams."
>>> tokeniser.tokenize(line)
['My', 'weight', 'is', 'about', '68', 'kg', '+', '/', '-', '10', 'grams']
但它在NLTK v3.1中不起作用:
>>> import nltk
>>> nltk.__version__
'3.1'
>>> pattern = r'''(?x) # set flag to allow verbose regexps
... ([A-Z]\.)+ # abbreviations, e.g. U.S.A.
... | \$?\d+(\.\d+)?%? # numbers, incl. currency and percentages
... | \w+([-']\w+)* # words w/ optional internal hyphens/apostrophe
... | [+/\-@&*] # special characters with meanings
... '''
>>> from nltk.tokenize.regexp import RegexpTokenizer
>>> tokeniser=RegexpTokenizer(pattern)
>>> line="My weight is about 68 kg, +/- 10 grams."
>>> tokeniser.tokenize(line)
[('', '', ''), ('', '', ''), ('', '', ''), ('', '', ''), ('', '', ''), ('', '', ''), ('', '', ''), ('', '', ''), ('', '', ''), ('', '', ''), ('', '', '')]
稍微修改一下你的正则表达式组的定义,你可以使用这个正则表达式在NLTK v3.1中使用相同的模式:
pattern = r"""(?x) # set flag to allow verbose regexps
(?:[A-Z]\.)+ # abbreviations, e.g. U.S.A.
|\d+(?:\.\d+)?%? # numbers, incl. currency and percentages
|\w+(?:[-']\w+)* # words w/ optional internal hyphens/apostrophe
|(?:[+/\-@&*]) # special characters with meanings
"""
在代码中:
>>> import nltk
>>> nltk.__version__
'3.1'
>>> pattern = r"""
... (?x) # set flag to allow verbose regexps
... (?:[A-Z]\.)+ # abbreviations, e.g. U.S.A.
... |\d+(?:\.\d+)?%? # numbers, incl. currency and percentages
... |\w+(?:[-']\w+)* # words w/ optional internal hyphens/apostrophe
... |(?:[+/\-@&*]) # special characters with meanings
... """
>>> from nltk.tokenize.regexp import RegexpTokenizer
>>> tokeniser=RegexpTokenizer(pattern)
>>> line="My weight is about 68 kg, +/- 10 grams."
>>> tokeniser.tokenize(line)
['My', 'weight', 'is', 'about', '68', 'kg', '+', '/', '-', '10', 'grams']
如果没有NLTK,使用python的re模块,我们发现本机不支持旧的正则表达式模式:
>>> pattern1 = r"""(?x) # set flag to allow verbose regexps
... ([A-Z]\.)+ # abbreviations, e.g. U.S.A.
... |\$?\d+(\.\d+)?%? # numbers, incl. currency and percentages
... |\w+([-']\w+)* # words w/ optional internal hyphens/apostrophe
... |[+/\-@&*] # special characters with meanings
... |\S\w* # any sequence of word characters#
... """
>>> text="My weight is about 68 kg, +/- 10 grams."
>>> re.findall(pattern1, text)
[('', '', ''), ('', '', ''), ('', '', ''), ('', '', ''), ('', '', ''), ('', '', ''), ('', '', ''), ('', '', ''), ('', '', ''), ('', '', ''), ('', '', ''), ('', '', ''), ('', '', '')]
>>> pattern2 = r"""(?x) # set flag to allow verbose regexps
... (?:[A-Z]\.)+ # abbreviations, e.g. U.S.A.
... |\d+(?:\.\d+)?%? # numbers, incl. currency and percentages
... |\w+(?:[-']\w+)* # words w/ optional internal hyphens/apostrophe
... |(?:[+/\-@&*]) # special characters with meanings
... """
>>> text="My weight is about 68 kg, +/- 10 grams."
>>> re.findall(pattern2, text)
['My', 'weight', 'is', 'about', '68', 'kg', '+', '/', '-', '10', 'grams']
注意:NLTK的RegexpTokenizer如何编译正则表达式的变化会使NLTK’s Regular Expression Tokenizer上的示例过时.