python – 在Pandas中,如何根据多列的组合创建一个唯一的ID?

我有一个非常大的数据集,看起来像

df = pd.DataFrame({'B': ['john smith', 'john doe', 'adam smith', 'john doe', np.nan], 'C': ['indiana jones', 'duck mc duck', 'batman','duck mc duck',np.nan]})

df
Out[173]: 
            B              C
0  john smith  indiana jones
1    john doe   duck mc duck
2  adam smith         batman
3    john doe   duck mc duck
4         NaN            NaN

我需要创建一个ID变量,这对于每个B-C组合都是唯一的.也就是说,输出应该是

            B              C   ID
0  john smith  indiana jones   1
1    john doe   duck mc duck   2
2  adam smith         batman   3
3    john doe   duck mc duck   2 
4         NaN            NaN   0

我实际上不关心索引是否从零开始,以及缺失列的值是0还是任何其他数字.我只是想要一些快速的东西,它不会占用大量内存并且可以快速排序.
我用:

df['combined_id']=(df.B+df.C).rank(method='dense')

但输出是float64并占用大量内存.我们可以做得更好吗?
谢谢!

最佳答案 我想你可以使用
factorize

df['combined_id'] = pd.factorize(df.B+df.C)[0]
print df
            B              C  combined_id
0  john smith  indiana jones            0
1    john doe   duck mc duck            1
2  adam smith         batman            2
3    john doe   duck mc duck            1
4         NaN            NaN           -1
点赞